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Abstract. Interesting cutting plane approaches for solving certain difficult multiextremal global
optimization problems can fail to converge. Examples include the concavity cut method for concave
minimization and Ramana’s recent outer approximation method for unary programs which are linear
programming problems with an additional constraint requiring that an affine mapping becomes unary.
For the latter problem class, new convergent outer approximation algorithms are proposed which
are based on sufficiently deég,-norm or quadratic cuts. Implementable versions construct opti-
mal simplicial inner approximations of Euclidean balls and of intersections of Euclidean balls with
halfspaces, which are of general interest in computational convexity. Computational behavior of the
algorithms depends crucially on the matrices involved in the unary condition. Potential applications
to the global minimization of indefinite quadratic functions subject to indefinite quadratic constraints
are shown to be practical only for very small problem sizes.
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1. Introduction
Let
8, :={§ € R¥" . § symmetrig¢
and
U, :={U € 8, : Jv € R* with U = v’}

denote the space of real symmethick n matrices and the set afnaryn x n
matrices, respectively.
Moreover, letU : RY — 8, be an affine mapping defined by

d
U@ =U+) uU', (1.1)
i=1

wherez = (z1, ... ,z4) € R andU’ € 8,,i =0, ... ,d.



124 R. HORST AND U. RABER

GivenU! € 48,,i =0,...,dandh € RY, A € R"*? p e R", we call the
optimization problem

minh’z
s.t.Az <b
UGz) € Uy, (1.2)

in z € R? aunary program(UP).

Throughout this article we will assume that the polyhedron definedy b
is boundedi.e. a polytope.

Our interest in problem (1.2) and the content of the present paper are motivated
from interesting observations and algorithmic ideas proposed in the dissertation
of Ramana (1993: ch. 7). Notice that Problem (1.2) can also be formulated as a
semidefinite program with an additional rank constraint (for related discussion,
see, e.g., Fujie and Kojima, 1995; Poljak et al., 1995; Ramana, 1993; Shor, 1987;
Vandenbergh and Boyd, 1996). A first interesting observation made in Ramana
(1993) (without detailed proof) is that an arbitrary all-quadratic global optimization
problem, which consists in minimizing an indefinite quadratic objective function
subject to a finite number of indefinite quadratic constraints, can be transformed
into an equivalent (UP) of the form (1.2). Such indefinite all-quadratic optimization
problems arise from various important applications; for a survey we refer to Al-
Khayyal et al. (1945). A second observation is based on eigenvalue inequalities
due to Weyl: Given an optimal vertex solutignof the LP-relaxation mifh”z :

Az < b} of (1.2) satisfyingU (z) ¢ U,, and given the eigenvalues 0f(z), a

linear constraint(z) < 0 can be constructed satisfyirtgz) > 0 but£(z) <

Ovz : U(z) € U,. Therefore, by successively adding such valid difts < 0

to LP-relaxations of (1.2), one obtains an outer approximation (or cutting plane)
algorithmic approach for solving (1.2), several variants of which are proposed in
Ramana (1993). A serious deficiency of this algorithmic approach, however, con-
sists in the fact that cuts can eventually become very shallow such that convergence
of the sequence of outer approximation to an optimal solution of (1.2) cannot be
guaranteed. A similar deficiency has been observed in other cutting plane methods
for certain global optimization problems (cf. Horst and Tuy, 1996: ch. 3).

It is the purpose of the present paper to overcome the above deficiency by
proposing alternative outer approximation algorithms for solving (1.2) which are
convergent in the sense that every accumulation point of the sequence of outer ap-
proximations is an optimal solution of (1.2). Using the observation that in Problem
(1.2) with (1.1) it suffices to consider matrices € 8,,i < 1,... ,d, which form
an orthonormal system with respect to the inner product.

n
R X R > R A-B=t(ATB) =) A;Bj, (1.3)
i,j=1
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where
A= (Aij)nxn, B = (Bij)nxn € /Sn,

we first derive valid,,-norm and quadratic cuts. These are reverse convex con-
straints which, for each optimal solutianof an LP-relaxation of (1.2) satisfy-

ing U(z) ¢ U,, cut a sufficiently large ball (with respect to tlig,-norm or to

the Euclidean norm) centered zbut of the polyhedron defined by relaxed con-
straints without affecting unarity in such a way that convergent outer approximation
schemes result. In case of thg-norm, the balls can be built up by successive
cutting planes. In case of the Euclidean norm, we propose an optimal inner approx-
imation by regular simplices which leads to a convergent cutting plane algorithm.
Suitable additional cuts can be derived in order to speed up convergence.

The paper is organized as follows. The next section demonstrates how indef-
inite all-quadratic optimization problems can be transformed into an equivalent
unary program of the form (1.2), where the matrices corresponding to the matrices
U’ in (1.1) form an orthonormal system with respect to the inner product (1.3).
Section 3 puts together some preliminaries underlying the basic idea of the outer
approximation approaches and discusses briefly Ramana'’s algorithm. In Section 4,
the above mentioned quadratic cuts are derived along with convergence properties
of corresponding outer approximation schemes. Section 5 presents a convergent
cutting plane algorithm which uses tlig -norm, and Section 6 discusses imple-
mentable algorithms for the case of Euclidean balls. The final Sections 7 and 8
contain some preliminary numerical results obtained with a number of randomly
generated examples and a brief conclusion, respectively, which shows, in particular,
that practical application to all-quadratic optimization problems is limited to very
small problem sizes.

2. Unary programs and all-quadratic optimization problems

In this section, it is shown that an optimization problem with arbitrary quadratic
objective function ang arbitrary quadratic inequalities invariables is equivalent

to an unary program i(f“zrl) + n variables. By reasons which will become evident

in Section 4, we choose a transformation which yields an unary program, where
the matrices corresponding to the matridés i = 1,...,d, in (1.1) form an
orthonormal system (ONS) with respect to the inner product (1.3). Consider the
all-quadratic optimization problem (AQP)

min x” 0% + d®7 x

stxTQix+W@dH'x+c <0, i=1,... , D (2.1)
where theQ' are symmetric reat x n matrices,d’ € R*,i = 0,..., p, and
¢ eR,i=1,...,p. Notice that the matrice®' can be negative semidefinite or

indefinite, cases in which we are particularly interested in.
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Let ¢; denote the-th unit vector inR"*, and letE;; = e,-ejT be the elementary
matrix with entry 1 at positioni, j), entries 0 else. Consider the (UP)

minh’z
S.tLAz < b,
n+1
U@z) € Upsr, ze RO (2.2)
inthe variablez = (z11, ... , 210y 200415 222, -+ 5 220415 -« - » Znns Zn,n+l)T1 where

1
—d° i=1,...,n,
V2!

Azz,ij=\/§Q1Z l<i<j<n €=1,...,p; Ai=0F,

ij

hij =v20% 1<i < j<n; hj;= Q,Q,w hins1 =

ij

1
A(,(i,n-‘,—l)zﬁdi(a i=1,...,l’l, £=1,...,p; bg=—6‘£, £=1,...,p,
and

U R i1 1

U= Y zU7+) zU"+U° (2.3)

1<i<j<n+1 i=1

with UV = \%(E,;,- + E;;), U = E;;, andU° = E,11,41. Equivalence between
the (AQP) (2.1) and the (UP) (2.2) holds in the sense of the following result.

PROPOSITION 2.1.Letx* be an optimal solution of Problem (2.1) and l¢tbe
an optimal solution of Problem (2.2). If we set

Z,;,-=x/§xi*x;‘, 1§i<j§l’l;
Zi=xx, 1<i<mn; Zi,n-',-l:\/zx;ka 1<i<n,

and

thenz is a feasible solution of Problem (2.2),is a feasible solution of Problem
(2.1), and

()E)TQOJE + (dO)T)E — (x*)TQox* + (dO)TX* — hTZ — hTZ*- (24)
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Proof. Straightforward calculation shows that
_ x* .
U@ = (1)((x )L,

and hencd/ (z) € U, 41-
Let A, denote the/-th row of the matrix4, £ =1, ..., p. Then we have

n n n
_ - = b % % l %
Az = E Agijzij + E Agint)Zintl = E QX x; + E d; x;
i=1 =1

1<i<jzn i,j=1

— (x*)TQ(x* + (dZ)Tx* < _cf — bf
i.e.,z is a feasible solution of Problem (2.2). Similar direct calculations show that
hTZ — (X*)TQOX* + (dO Tx*,

and hence, sincgsatisfies the constraints of (2.2), afidis an optimal solution of
(2.2), we have

hTZ* < (X*)TQOX* +(dO)TX*.

Analogously, one easily obtains thats feasible for (2.1) and” z* = (x)” Q% +
(d®T” x, which implies that

hTZ* > (X*)TQOX* + (dO TX*. O

Notice that additional linear constraints in (2.1) can be transformed into equivalent
linear constraints to be added to (2.2) in a straightforward way. Boundedness of
{z € RY : Az < b} is not necessarily guaranteed in the (UP) (2.2) arising from
(2.1). But if bounds? < x < L for the variablex € R" of (2.1) are known
(which is often the case in applications), then we obtain the additional constraints
¢ < z < Lin (2.2), where the components of the vectrs € R?, d = ("3) +n,

are given by

Lij =2 ma)({l_ilj

li,l’l+l = «/El_lv 1 =< I
respectively.

Notice that a short formulation of Proposition 2.1 using semidefinite program-

ming notation is available along the lines given, e.g., in Fujie and Kojima (1995),
Poljak et al. (1995), Ramana (1993), and Vandenbergh and Boyd (1996).
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3. Preliminaries and Ramana’s approach

The following results taken from Ramana (1993) are needed for the cutting plane
algorithms which we will discuss in this and subsequent sections.
Letn > 2.

LEMMA 3.1. LetU € 4,, and leta(U) < A(U) < --- < X, (U) denote its
eigenvalues. Then the following assertions are equivalent:
() U €U

(i) »@U)=0, i=1...,n—1;
(i) 21(U) = 0andx,_1(U) <0,

(iv) A1(U)=0andtrU) < A,(U).

Proof. The above equivalences follow readily from the well-known facts that a
matrix U is unary if and only if it is positive semidefinite and ra(i) = 1, and
that tr(U) = Y7, A (U). 0

LEMMA 3.2 (Weyl). Let E, F € 4, with eigenvalues indexed in an increasing
order as above. Then, fére {1, ..., n}, we have

MF) + M (E) < M(F + E) < M(E) + A (F)
Proof. See, e.g., Horn & Johnson (1985). O

COROLLARY 3.1. LetU : RY — 8, be an affine matrix mapping defined by
d
U(z) = U°+Zini, zeR,
i=1

whereU' € 48,,i =0, ... ,d. Then, for every e ]R{i andk € {1, ..., n},

d
MU () < MU+ yidn(UY)
=1
and
d

MU = MU + ) yika(UY).
i=1

Proof. Apply twice Weyl's inequality (Lemma 3.2) and use tha(ulU) =
pri(U) Vo > 0. O

Next, consider the LP-relaxation

Az <b (3.2)
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of (UP) (1.2) which arises from (1.2) when the unary conditibr U, is omitted.
Given a vertex optimal solutiopof (3.1) and the affine matrix mappirig defined

in (1.1), thenA,(U(z)) = 0 andA,_1(U(z)) = 0 implies thatz is an optimal
solution of (UP) because of Lemma 3.1. Otherwise, one musthg@i&(z)) < 0
ori,_1(U(2)) > 0 (or both). In this case, however, Corollary 3.1 allows one to con-
struct an additional linear constraifitz) < 0 which, when added to the constraints

of (3.1), is violated by but satisfied by all feasible solutions of (1.2). Continuing in
this way, one obtains a polyhedral outer approximation (or cutting plane) approach
which, in each iteration requires only solving linear programs and eigenvalue cal-
culation. Each vertex optimal solutiarf of such a linear program is the unique
solution of a nonsingulad x d system of linear equations binding #t which —
following the standard terminology in simplex algorithms — will be called a non-
singular basic system corresponding:fo Simplex-type algorithms provide such

a system automatically. Based on the above arguments, Ramana (1993) proposed
the following approach:

ALGORITHM 1
Initialization:
SetP? « {z e R? : Az < b}, stop<« false,k <— 0

While stop = falsedo
Solve the LP mifh”z : z € P¥} to obtain a vertex optimal solutiatf and
a corresponding nonsingular basic systBfa < r* satisfying B*z¢ = r*;
compute the eigenvalues(U (z¥))
if 21(U(z¥)) > 0 andx,_1(U(z¥)) < Othen
ZF is optimal solution of (UP),
set stop<« true
else
if A,_1(U(z")) > Othen
set(ah)f < MU —U(BYe)), i=1,....d,
(BHY < —r,1(U(Z*)), and
Pk  pkn (z e RY . — (@Y BFz < —((@H¥)T B*7* + (ﬂl)k}
end if
if A1(U(z%)) < Othen
set(@®)f < 1, (U°—U((BYe)), i=1,....d,
(BH* < 21U (ZH), and
Pk <« Pk N {Z c Rd . ((az)k)TBkZ < ((aZ)k)TBka + (ﬂZ)k}
end if
setPl — PFk —k+1
end if
end while
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It is easy to see that the cuts constructed in Algorithm 1 are valid (for details, see
Ramana, 1993), i.ezf ¢ P*'but F := {z e R : Az < b,U(z) € U,} C

P**+1. However, convergence of the algorithm in the sense that every accumulation
point z* of the sequencéz*};cn satisfiesz* € F cannot be guaranteed, since
((aH"TB* (j = 1, 2; k € N) might fail to be bounded. For a related convergence
theory of cutting plane algorithms in global optimization, we refer to Horst & Tuy
(1996).

4. Valid cuts for convergent outer approximation algorithms

A first step towards convergent outer approximation algorithms for solving (UP)
or (AQP) via the corresponding (UP) consists in requiring that in the affine matrix
mapping (1.1)

d

U:R - 8,0 U@ =U+)_ zU'

i=1
the matriced/!,i =1, ... ,d, form an orthonormal system (ONS) with respect to
the inner product (1.3).

LEMMA 4.1. Each (UP) of the form (1.2) witli/ (z) defined by (1.1) can be
transformed into an equivalent (UP) where the matri¢€si = 1, ... ,d, form
an ONS. i

Proof. Let in the original probleml/(z) = Y%, z;U' whereU' € 4,,i =

1,2,...,d, are arbitrary. Determine a maximal linearly independent subset
(Ui:j=1,...,dyc{U :i=1,...,d)

(so that the two linear spaces generated byltherespectively thé/! have equal
dimension). Remove from the original (UP) all variahles < {1, ... ,ci}\{i.,-,j =
1,...,d} along with the corresponding components of the vektand the corre-
sponding columns of the matrix. Use the Gram—-Schmidt procedure to generate
from{UY : j = 1,...,d} acorresponding ON&// : j = 1,...,d}. The final
transformation of the remaining entries/ond A, respectively, is straightforward
via the homeomorphism which maps ii& onto theU/, j =1, ... ,d. O

Notice that the transformation presented in Section 2 which links the all-quadratic
problem (2.1) to an equivalent unary program (2.2) yields an ON$n (2.3).

LEMMA4.2. LetE; = eel € ROHD*0HD i j = 1 ..., n+ 1 Then the
matrices

Uii=E,‘,', i=1,...,n;
1
NG

form an ONS with respect to the inner product defined in (1.3).
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Proof.Lemma 4.2 can be verified by straightforward calculation. |

Next, let||Allr = VA - A, A € §,, denote the norm induced by the inner product
(2.3) (the so-called Frobenius norm), and|let|, and|| - ||, denote the Euclidean
norm and the maximum norm, respectivelyRif.

LEMMA4.3. Let{U; i =1,...,d} C 48, form an ONS with respect to the inner
product-. Then

d
Y @=U
i=1

Proof. We have

=lz—zl2 Vz,zeR. (4.1)
F

2 d ra
=tr (Z(z - z»U") (Z(z - Z)iU")
F i=1 i=1

=Y (2—2iz—2); tr(UHUY)

ij=1

d
=2 -n2
= E z—2i=lz—2zl5
i=1

d
Y G-
i=1

since t((UHTU) =U" - U/ =, . 5
Lemma 4.3 combined with Weyl’s inequality (Lemma 3.2) allows one to derive

bounds on the distance of eigenvalued/gt) andU (z).

PROPOSITION4.1.Let{U' :i = 1,...,d} C 8, form an ONS with respect to
the inner product, and letU : R? — &, be an affine matrix mapping of the form

d
1= U(z) = U+ Zinf, U° e 3,.
i=1

Assume that the eigenvalues of the matrices involved are indexed in an increasing
order. Then, for each, z € R?, we have

A—1(U(2)) = 21U (2) — Iz — Zll2, (4.2)
and

MU() = MU@) + Iz = zl2. (4.3)
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Proof. Since the Frobenius norm is an upper bound for the spectral radius, one
obtains by means of Lemma 3.2:

M-1(U(2) = h1(U(z — )+ UE) — U

d
= A1 (Z(z - U" + U@)

i=1

d
> M1 (U @) + M (Z@ - zw")

i=1

d
Y -

i=1
= A—1(U2) — llz — Zll2.

> M-1(U(2) —

F

Similarly, inequality (4.3) follows from

d
MU@) = UG- +UE) -U% =1 (Z(z — DU+ U@)

i=1

d
< MU @) + M (Z(z - Z),»U")

i=1

d
Y G-

i=1 F
= 1U®R) + llz = Zll2- =

=nmU@) +

Notice that Proposition 4.1 can also be derived from the Hoffman—Wielandt
(1953) inequality.
Similar bounds with respect to the maximum norm follow by using

d d
215 =" "1z* < Y lizll3, = dlzll%
i=1 i=1
COROLLARY 4.1. Under the assumption of Proposition 4.1 there holds
Mne1(U(2)) = hy1(U D) — Vdlz — 2l (4.4)
and
MU @) < MU@) +Vdllz — 7o (4.5)

Let now agairt € R¢ be an optimal solution of an LP- relaxation of the (UP) (1.2)
satisfyingU (z) € U,. Then it follows from Proposition 4.1 and Lemma 3.1 (iii)
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that

l12(2) == max{A,—1(U@), 1 (U@)} —llz =22 =0 (4.6)
is a valid cut, i.e., we havé, :(z) > 0 butf,:(z) <0Vz:U(z) € U,. Likewise,

Corollary 4.1 yields a similar valid cut

1
laz(2) = ﬁ(maX{M—l(U(Z)), —2U@)Y — llz = Zlleo = 0. (4.7)

Next, we show that an outer approximation algorithm for solving (1.2) which uses
either (4.6) or (4.7) is convergent. Notice, however, that both cuts are nonlinear so
that an algorithm which uses one of them directly induces difficult subproblems.
Ways to overcome these difficulties will be discussed in the following sections.

PROPOSITION 4.2. Let {z*}1cn be a sequence of points jp € R? : Az < b}
satisfying either

€ (z) <0 ki eNi>k (4.8)
or
€5.4(z) <0,k,i eN,i > k. (4.9)

Then every accumulation poigt of {z*}.cn satisfiesU (z*) € U,.
Proof. We prove the result fot; .«; the proof for¢, .« is similar: Let{z*},cn be
a subsequence ¢f*}.cy satisfyingzs — z*(g — oo). From (4.8) follows that

€y e (Z1) <0,
which, in view of (4.6), implies
max{r,—1(U(z)), =11 (U (")} — 0 (g — 00),

since||zk+1 — zka |, — 0 (¢ — 00).
From this ensues

AU (") = 4,2(U () =0

by continuity of the eigenvalue functionals, A,_1 : 4, — R. But this is equiva-
lenttoU(z*) € U, because of Lemma 3.1. O

5. Implementable algorithm using thef,,-norm

Consider the (UP) (1.2) witfz € R? : Az < b} not empty and bounded. Assume
that{U' :i =1,...,d} forms an ONS with respect to the inner produdefined

in (1.3), and letz > 2,d > 2. The following algorithm is based on the cut (4.7)
and uses the fact that tlig,-unit ball is the intersection of®2hyperplanes.
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ALGORITHM 2

Initialization:

SetP? « {z € RY : Az < b}, and solve the LP mi®”z : z € PP} to obtain
an optimal solution®; setpo < h7z% u® <« wpo, P <« { PO}, stop < false
k<0

While stop = falsedo
if 21(U (%) > 0andx,_1(U (7)) < Othen
zF is optimal solution of (UP),
set stop< true
else
sete’ « Z5max(—11(U (z9), Ap-1(U (z9))
for j = 1until 2
for i = 1until 4
setPf; — PEN{z e R (=1)iz < (=1)zF — &)
if P} # ¢ then
solve the LP mif:"z : z € P} to obtain an optimal solutiog,
and optimal objective function valye,: ; set® <« L U {P,.’]‘_}
'j

end if
end for
end for
setP < P\{P¥}
if P # ¢ then
setuftt « min{up : P € £}, and choose ! and P¥*1 € » such
thatz**1 € P anduf+t = W7 7M1 = ppiaa; set
k<—k+1
else
Problem (UP) has no feasible point, s&ip < true
end if
end if
end while

REMARK 5.1. The set? is a collection of polytopes, and the number of inequal-
ities describing a polytop@ < # can be bounded byt + 24, since fori, j fixed
the halfspaces defined loy-1)/z; < (—1)/zF — ¢* are parallel for alk € N.

PROPOSITION 5.1.
(i) If Algorithm 2 terminates at a point*, thenz* is an optimal solution of
Problem (UP).

(i) Otherwise, every accumulation point of the sequefiég.y is an optimal
solution of Problem (UP).
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Proof. We first show by induction that, at each iteratiorthe current partition
P satisfies

JoF (5.1)
Pep

whereF denotes the feasible set of Problem (UP).

This implies assertion (i), and moreover, thédt < min{h”z : z € F}. For
k =0, we haveP? = {P%), P’ = {z e R? : Az < b}, and hence (5.1). Assume that
(5.1) holds at the beginning of iterati@n Then it suffices to show that

U PioFnPh
i=1,...d
j=1,2
Letz € F N P*. From Corollary 4.1 we know that
dna(U(2)) = 22 (U () = Vdllz = 2¥loe
and
MU R) < MU E) +Vdlz — 2w
But,_1(U(z)) = M(U(2)) = 0, sincez € F (cf. Lemma 3.1), and hence
Iz = 2"llee = Max |z; — zf| > 1 max{—11(U (z)), L,—1(U ()} = &*
S v e NV ] e '

It follows that there exisip € {1, ... . d}, jo € {1, 2} such tha(—1)"0(zf —z;y) >
e¥. This impliesz € P} , sincez € P*.
J0

Next, letz* be an accumulation point of the sequetigg ., and let{z*},cn
be a subsequence such that — z*(g — o0). It suffices to show that* € F,
since this impliesi” z* > min{h’z : z € F}, where equality must hold because of
hTzk = pk < min{h”z : z € F}. By passing to a subsequence, if necessary, we
can assume that*+ c P*, g e N. This implies, by construction,

1
|2t — zKa oo > e = 7 max{—x1(U (z")), 4,_1(U (z"))} Vg € N.

Passing to the limiy — oo and using continuity of the eigenvalue functionals
yields A1 (U (z*)) = A,_1(U(z%)) = 0, i.e.,z* € F (cf. Lemma 3.1). O

6. Implementable algorithms using the Euclidean norm

Geometrically, the inequalities (4.6) and (4.7) tell us that, for each optimal solution
z of an LP-relaxation of the (UP), satisfying(z) ¢ U,, one can cut a ball out
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of the polyhedron defined by relaxed constraints without affecting unarity. This
can be done by linear cuts in case of thg-norm (Algorithm 2). In case of the
Euclidean norm (inequality (4.6)), we propose inner approximation of the ball by
a regulard-dimensional simplexd- simplex) with vertices at the boundary of the
ball. This choice is motivated by the two facts, that, on one hantisenplex is
thed- polytope with minimal number of facets, and, on the other hand, that among
the d-simplices contained in a given ball, only the regular ones are largest (with
respect to volume) (for a proof see Slepan, 1969).

Let BY denote the Euclidean unit ball centered at the origin, andS le&

[vo, ... , vz] be a regulae-simplex with all vertices on the boundary Bf. Then
it is known that the edge-length 6fis given by
2d+1) . .,
lvi —vjll2 = YR i,jel0,....d}, i#] (6.1)

(cf. Sommerville, 1929; Gritzmann et al., 1995). Moreover, it is elementary to show
that we have 0= d—il >, v, and that the radius of the largest Euclidean ball
which can be inscribed int8§ is

1
=2, 6.2
r=- (6.2)
where the number is also the distance of each facet ffrom the origin. We
also use the fact that, for = 0, ... , d, the vertexv; is orthogonal to the facet

S;j =lvo, ..., vj-1,Vj41, ..., vg], and hence the hyperplaitfy; generated bys;
can be described by

Hs, ={x e R :v] (v —x) =0},i € {0, ... ,d})\{j}. (6.3)
Next we show that the following vectots, ... , v, are vertices of a regulaf-
simplexS with circumsphere3?. Set

vo = /aoeq

Vi = Jazeq-1 — Z Jazi—ieq—j-1, i=1...,d—-1, (6.4)

j=1
d—1
Vg = —4/02(d-1)€1 — Z A aA2j-1€d—(j—1)»
j=1
where
ap =1,
i—1\?

@ = a;_1/ (d - ) , iodd (6.5)

aj—p — a1, i even

ande; € R? is thei-th unit vector.
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LEMMA6.1. Letay, ..., azq-1) be defined as above. Then we have

L d+1 d—i .
=T T aZirr' T

1,...,d—1 (6.6)

Proof. The assertion is obviously correct for= 0. Assume that it holds for
i =j—1 j> 1. Thenwe have, in view of (6.5):

d—j+1 d—j+1( )
d—] 2j d—] 2j—-2 2j-1
d—j+1 .
:%(azj,z—azj,z/(d—ﬂrl)z)
—J
d—j+1d—-j+1?-1
= ; ; > d2j-2
d—j d—-j+D
_d—j+2 _d+1
Td— 1Ty

which is the desired result for= ;.

PROPOSITION 6.1.The simplexs = [vy, ... , v4] constructed as above satisfies
() llillz=1, ie{0,...,d},

(i) llvi —vjllo= /2L i jel0,....d}, i # ]

Proof. From (6.5) we have
i
ay=1- a1, i=0,....d-1 (6.7)
j=1
and hence
lvil3=az+ > azj-1=1 i=0,....d-1

j=1

Assertion (i) follows, sincdlv,|l2 = ||va—1ll2.
Lemma 6.1 and (6.7) yield

d—(d—-1+1 d+1

)y =2—
d—d—1) azd-1) s

2
lvi—1 — vallz = daza-1) =2 )
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and, fori, j € {0, ... ,d},i < j,i <d—1:

J
v —vjll5 = az; + Z az—1+ (Vaz + az1)?

I=i+2
J J
=1- Zazz_l + Z az-_1+ (\/E + aZi-‘rl)2
=1 I=i+2
i+1

=1- ZaZZfl + agi + aziy1 + 24/azi/az1

=1
[ az
= 2612,' -+ 24/021' m
1

=202i+2a2id_l.

d—i+1) d+1)
:2— i:2 .
d—i © d H

Given the above regular simplicial inner approximation of an Euclidean ball and
the simple representation (6.3) of the hyperplanes generated by its facets, an im-
plementable outer approximation algorithm for solving Problem (UP) can be for-
mulated along lines which are very similar to Algorithm 2 and its discussion:
Substitute the unit balB¢ by the ball{z € R? : |z — zX|l, < &'} wherez* is
an optimal solution to an LP-relaxation of Problem (UP) satisfyihg*) ¢ U,,
andef = max{—x11(U(25), r,—1(U (z5))}, and replace the above simplex vertices
V; byEk'Ui +Zk.

Finally, in Algorithm 2 replace* accordingly, and, in the loop generating the
setsPl.’;, replace these by
Pk — PN {z € R : v,»Tz < viT(skvl + zk)}, if i =0,

1

and by

Pi"<—Pkﬂ{ze]Rd:v,»TzfviT(ekvo—i-Zk)}, ifl<i<d.

Convergence of the resulting algorithm can be proved very similarly to the proof
of Proposition 5.1 by using

gka

— < |lzf =2, (6.8)
d
for the correspondent subsequence, which holds because of (6.2). Details are given
in Raber (1996).

Improved cuts can be constructed by exploiting the following two observations.
The first observation will allow us to construct an additional linear cut in each
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iteration whereas the second observation aims at improving the above simplex with
respect to the depth of the cuts induced by its facets.

Let z be an optimal vertex solution of an LP-relaxation of (UR), =
max—A1(U(z)), 1,_1(U(2))} and letBz < r denote a corresponding subsystem
with B € R?*4 regular satisfyingBz = r. Thenthe se€C = {r e RY : Bz < r}
describe a cone vertexed aand containing? = {z € R : Az < b} (C is the
smallest of such cones and uniquely determined vghema nondegenerate vertex).

Each of the extremal directions'(i = 1, ... , d) of C is a nontrivial solution of
the system

Bw =0, ¢=1,...,i—-1i+1....,d,

B,‘wi <0,
whereB, denotes thé-th row of B. Letw?, ... , w? denote the intersection points
of the rays

(weRl:w=z74+1x',A>0}, i=1,....,d

respectively, with the ball
B:i={zeR':|z—Zll2 <&},
and let
H={zeR :a"7=10}

denote the unique hyperplane satisfyin ¢ H,i = 1,... .,d, ||lal, = 1, and
a’z > b. Then it follows from (4.6) that

PN{zeR :alz<b)D{zeP:U®) e Uyl
i.e.,
alz <b (6.9)

is a valid cut.

Notice that, similarly to Ramana’s original approach, a cutting plane algorithm
which uses the above cut alone can fail to converge. However, convergence can be
accelerated when one uses it as additional cut in each iteration of the above con-
vergent outer approximation approach. Here, two variants are conceivable: Variant
1 adds the cut (6.9) to the list of cutting planes defining each polyRsp&ariant
2 depends on the following condition:

Let P, be a polytope obtained by a partitioning procedure which uses the above
simplicial inner approximation. Then we generate the next polytopes

P=P_N{zeR :@)Tz<b}, i=1...,r+1
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by r + 1 successive cuts (6.9) of the fori )"z < b',i = 1,...,r + 1, wherer
is the largest number such that

_min_ {llzp, = zpll2 — e(zp)d} = 0

holds withz 5 optimal solution of mifh’z : z € P;}, and
e(zp) = max—r1(U(zp)), An-1(U(z))}-

The polytopeP, . is then partitioned according to the above outlined variant of
Algorithm 2 (simplicial inner approximation), and we restart wRh= P, ;1.
Next, we consider the cut (6.9), and observe that

PclizeRl:alz<a’z).

Therefore, when using the cut (6.9), it suffices to construct a simplicial inner
approximations of

B:N{zeR a7z <a’7).

Letd > 3. The simplex§ which we propose will be the convex hull of a regular
(d — 1)-simplexS C H := {z € R : a”z = a7} and the intersection point of the
ray {z € R? : z = 7 — xa, A > 0} with the boundary oB:. For simplicity of the
presentation we construstfirst for the case wher&: = B? (the Euclidean unit
ball) andH = {z € R? : —elz = 0}. After this, we will show how this ‘standard’
simplex can be transformed to the general cask:@ind H defined above.

It is clear from our previous construction that the vertiegs. . . , v,_1 Of our
regular(d — 1)-simplexS = [vo, ... , vs_1] are given by the formula (6.4), (6.5)
whered has to be replaced throughout By 1. It is also clear fromH = {z €
R : —e!'z = 0} that the last vertex af is given by

Vg = €4.
From Proposition 6.1 and the constructiorvgive see that

lvil=1, i=0,...,d

2d

7 bi=0...d-Li#]

lvi —vjll2 =
and
lvi — vall =v2, i=0,,...,d—1

Next, in order to incorporate the simpléxinto a cutting plane approach, we have
to derive an equivalent representation of the hyperply@enerated by the facets

A

S; = [vo,...,Vi_1,Vi41,...,0q4), 1=0,...,d—1
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LEMMA 6.2. We have

Hy ={zeR':9/z=10]vs}, i=0,....d-1

where
1
{}i=l_ d> :0,.. ,d—l
d—1
Proof. Since, fori € {0, ... ,d — 1} we have
d—1
Hy =1zeR iz=v,+ Z 1 —vg), € R
Jj=0,j#i

it suffices to show that
0/ (v —v) =0, jel0,...,d—1\{i}.

From(v;); = 0, one obtains

1 T
0/ (vj—va) = (v — eq) (v;—eq)
i J d -1 J
1
— Ty,
=v; v+ -1
But
1
‘Ul.ij = viTUO = —m
becauseS is a regular simplex with vertices at the boundary of the unit ball (cf.
(6.2)). It follows thaty; L Hy . O
Next, we show that the cuts given Iﬁi@_, i=0,...,d—1are deeper than the

cuts induced by the regular simplex.

PROPOSITION 6.2.The Euclidean distanc&0, H;,) of the hyperplanei;, de-
fined in Lemma 6.2 to the origin is

1 1

SO, H)= ——>=,i=0,...,d -1
S JdZ=2d+2 d
Proof. From
. d?>—2d+2
I15:15 =1 =

a2 a2
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and Lemma 6.2, we see that
1 1 1 1

Izl > ———19] va| = P = Vz € Hy,
Tl Y T d—1 16l JaZ—2d +2 1
and hence
1
80 Hy) > ————
' Vd?2—2d+2
Every affine combinatiod"{_q ,; A;v;, 9o ;. ; = 1, lies in Hy . Choosing
d—1
Ai=——1-—7=0,...,d—1,j /,
and
. 1
1T 422412
we obtain
d d-1
d—1 1
Z )\jvj = Z > Uj+ 2 Vg.
Py Py ¥ d?—d+2 d?—2d + 2

But Z?;é v; = 0 since the origin is the barycenter $fand hence

i AjUj = — d—1 v; + ! v
L T gz g 42 T g2 —2d+2 ¢
J=0.j#i

d—1 1 -1 . _,
= |v——= =——0;
d2—2d + 2 d—1% d2—2d + 2 5

It follows that

8(0H)<7d_1 Al S —
9 Av —_— vl = ’
S7=d2—2d 42" d?+2d +2

which concludes the proof. O

Next, we provide the transformation which maps the above constructed simplex
S (with respect to the unit baB¢ and the hyperplang; = 0) to a similar simplex
S* corresponding to the baB; and the hyperplanél = {z € R? : a7z = a"z}.
Construct an orthonormal bagis;, . .. , y,_1} of the linear subspacH — {z} (for
example, by means of the Gram-Schmidt method applied to the set of vectors
spanningH) and let

A= ()’1’ cee s Yd-1, _a)
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be the matrix with columns,, ... , y,_1, —a. Clearly, the matrixA is orthogonal,
and hence the transformation

T R 5> R T(2) =cAz+7 (6.10)
yields for anyz, 2 € R¢

IT () =zl = ¢elizllzand||T(z) = T(2)ll2 = €llz — Zll2.

Therefore, the desired simpléx = [vg, ..., v4]is given by

vi=T(),i =0,...,d. (6.11)
One easily verifies that the hyperplarﬂssl, generated by the face.§$ = [vg, ...,
V4, Vg, ..., 0y],0 =0, ,d— 1, are given by

Hy ={z € R 5T ATz = o] (evg + ATZ)). (6.12)

Here is the algorithm which incorporates the above observations. Throughout, the
pointsv;, i = 0,...,d are the vertices of the simplex constructed above with
respect taB¢ and the hyperplang; = 0.

In the following algorithm, we use agaitiz) = max—i1(U (z)), A,—1(U (2))}.

ALGORITHM 3

Initialization:

SetP? « {z € RY : Az < b}, and solve the LP mik’z : z € PP} to obtain an
optimal vertex solution?; set Vpo < {zpo}, upo < h7z0 0 < ppo, P < (PO},
stop<« falsg k < 0

while stop = falsedo
if 11U (%)) > 0and A,_1(U(z%)) < Othen
zF is optimal solution of (UP),
setstop < true
else
setek «— max{—A1(U ("), L,—1(U(Z"))}; chooseB* e R¥*? regular

andr* € R? such thatB*z < r* is a subsystem odz < b and B¥z* =
k

-
for i = luntil 4
let wf # 0 € R? be a solution of the linear syste®}w! = O,
¢=1,...,i—-1i+1,...,d, Bwf <0

- k
setwf « zF + L—wk
i Twflz

end for

determinea® € R?, ||a*||l, = 1 andb* € R such that{w¥, ..., wk} C
HY .= {z e R : ()77 = bF}, (a¥)T 25 > bF;

setPf — PrNn{zeRY: (a")Tz < b¥)
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if PX £ @then
solve the LP mifh” z : z € P*} to obtain an optimal vertex solution
zF and the corresponding optimal value;
if min.ey,, {I1Z* — zll2 — £(z)/v/d? — 2d + 2} < Othen
determine an orthonormal basi$, ... , y%_; of the linear sub-
spaceH* — {z*}, and set
Ay < (y’l‘, ... ,y"}fl, —a")
fori =0until d — 1
set Pik «~ PkN {z € RY : (v; — d—fled)TAZ < (v —
ea) (ehvg + AL 2N}
if P} # ¢ then
solve the LP mifn’z : z € Pl."} to obtain an optimal vertex
solutionz¥ and the corresponding optimal valm,—‘;ik;
setP « P U{P}}, Vpi < {z4)
end if
end for
else
P <« P UPK), Vi < Ve U (ZH)
end if
end if
P «— P\{P}}
if  # ¢ then
setuftt <« min{up : P € £}, and choose**! and P¥t1 ¢ &
such that**1 is a vertex of P**t and u 1 = 7M1 = 1 piia; set

k<—k+1
else
Problem (UP) has no feasible point, s&ip < true
end if
end if
end while

Convergence of Algorithm 3 follows from the following property:

PROPOSITION 6.3.If Algorithm 3 generates an infinite sequeneé}.cy, then,
for every accumulation point* of {z*};cn, there exists a subsequenggs }qeN
satisfying

() 7% — z*asq — oo, Pk > Pk+1 Vg e N,

(i) f|zktt — 2R, > e(Ro) /A2 —2d +2 Vg e N

Proof. Property (i) is obvious from the definition of an accumulation point
and the construction of the polytopes. In order to prove (i), we distinguish the
following two cases for the subsequer{e&} satisfying (i).

CASE 1Vi > 03¢ (i) > i : Vi D Vpii-
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This means that, while generatimf«© from P one must have applied at least
once the facial cuts induced by a simplex (tiR¥-loop,i = 1 untild — 1’ in
Algorithm 3). But then we know from Proposition 6.2 (taking into account the
subsequent transformation) that

20 — 2Kll2 > £(2%) /v/d? — 2d + 2.

Therefore, the sequen¢gt«®};cn C {z*},cn satisfies property (ii).

CASE 2:3ip > OYg > io: Vptg D V.
This means that, for alj > i, the polytopeP*+1 is generated from the polytope
P*s only by successive cuts of the for@*)” z < b*, and hence

(125 =zl —e(z)/v/d? —2d + 2} > 0 Vg > io.
1

min
V k

€
2EY pkg+

This implies in particularly that, for alj > ip, one has
qu S Vqu+1,

and hence

Iz — Ml — e (2) /Vd? — 2d + 2
> min {||lz"* — z|l — e(z)/vVd? — 2d + 2} > 0.
ZEVqu+1

Therefore, the subsequenieé’},~;, C {z*},cn satisfies property (ii). O

COROLLARY 6.1. If Algorithm 3 generates an infinite sequengé}cy, then
every accumulation point* is an optimal solution of Problem (UP).

Proof. In view of Proposition 6.3, the proof proceeds along the same lines of
arguments as the proof of Proposition 5.1. O

7. Preliminary numerical results

The algorithms of the preceding sections along with some variants involving addi-
tional cuts were encoded in C++ with management of partition sets by AVL-trees
and use of the LP-subroutine EO4NFF of the NAG-library.

Stopping criterion was maxA1(U(z)), L,_1(U(2))} < & with chosen toler-
ancee > 0. Variant (V1) is Algorithm 2 with additional cuts of the for@m*)” z <
b* as discussed with Algorithm 3. Variant (V2) is Variant (V1) with additional
Ramana-cuts (cf. Algorithm 1) modified in the way that whenewet/ (z¥)) < 0,
we use the cut

0 < (w"TU (" )wk,
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wherew* is a normalized eigenvector af (U (%)) (cf. Ramana, 1993).

Variant (V3) is Algorithm 3, and Variant (V4) is Algorithm 3 with additional
modified Ramana-cuts as in (V2). A comprehensive study on numerical experi-
ments with randomly generated testproblems run on a SUN Sparc 10 workstation
is given in Raber (1996), from where we report some typical examples and main
conclusions. In the following tables, we use the abbreviations V for the variant,
NIT for the required number of iterations; MNPS and MNC denote the maximal
number of occurring partition sets and of total linear constraints, respectively, and
A, A,—1 @andT are the final values of1(U (z)), A,—1(U (z)) and computing times
(sec.), respectively.

A first observation is that the numerical performance of the approaches de-
pends heavily on specific properties of each test problem. For example, all of the
variants can perform very poorly when distinct multiple optimal solutions of Prob-
lem (UP) exist such that different convergent subsequefi‘es are generated,
whereas unigue optimal solutions might lead to quite satisfactory performances.
As illustrative example consider the (UP)

. 1
min z11 + Z12+ Z13+Zzz+ 23
VRN NGR
St —z211— 222 <05
OSZii <1 121,2 (71)
052,75«/5 1§i<j§3
U(Z) (S ug

With U(2) = Ess+ Yoy 2 Eii + Y01 Y a1 %ij —5(Eij + Ej;) arising from the
simple quadratic problem

min xf + x1x2 + x% 4+ x1 4+ x2
st. —x2—x5<05 (7.2)
O0<x;<1i=12

having convex objective but a ‘reverse’ convex constraint. Problem (7.1) has the
two optimal solutiong® = (0.5, 0.0, 1.0, 0.0, 0.0) andz? = (0.0,0.0,0.0,0.5,1.0),
and fore = 0.1, we obtain the poor performances shown in Table 1.

On the other hand, Problem (7.1) with objective function

211+ \/_le + fZ13 + 222
which arises from (7.1) by omitting the last ter\%z% of the objective (resp. from
(7.2) by omitting the last term,) yields the results depicted in Table 2.
For unary problems not necessarily derived from all-quadratic optimization, it
is clear that algorithmic performance does essentially also depend on the form of
U° and the orthonormal basig’,i =1, ... ,d.
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Table 1. Problem (7.1) witte = 0.1
\% NIT MNPS MNC Aq An—1 T
(V1) 3804 4167 39 0.08845 0.09883 100.26
(V2) 2947 3123 75 0.06801 0.09615 120.68
(V3) 179203 136062 127 0.09937 0.09979 7317
(V4) 8448 4191 206 0.09612 0.09746 550

Table 2. Modified problem (7.1)
3 \% NIT MNPS MNC Aq An—1 T
0.1 (V1) and (V3) 9 1 19 —0.06449 0.0 0.14
0.1 (V2) and (V4) 5 1 21 —0.01019 0.04281 0.11
0.001 (V1) and (V3) 13 1 23 —0.00078 0.0 0.21
0.001 (V2) and (V4) 8 1 30 —2.6e-07 0.00015 0.17
0.000001 (V1)and(V3) 17 1 27 —-9.6e-06 0.0 0.28
0.000001 (V2) and (V4) 9 1 33 —7.0e-09 5.2e-06 0.21

Table 3. Numerical resultsfon = 7,d <n
3 d VvV NIT MNPS MNC Ai; An—1 T
0.1 3 all 1 1 26 0.0 0.09236 0.03
0.1 4 (V1) 7 9 32 —-0.08843 0.08267 0.20
0.1 4 (V2)and (V4) 3 1 34 0.0 0.05456 0.10
0.1 4 (V3) 5 2 33 —0.09423 0.08175 0.14
0.1 5 (V1) 1917 3276 55 —0.09378 0.09995 67.28
0.1 5 (V2) 28 22 54 0.0 0.09481 1.17
0.1 5 (V3) 1665 1223 85 —0.08985 0.09907 62.65
0.1 5 (V4 13 1 58 0.0 0.07576 0.40
0.1 6 (V2) 16 6 62 0.0 0.09612 0.78
0.1 6 (V4) 13 1 62 0.0 0.09618 0.59
0.1 7 (V2) 21 27 61 0.0 0.09953 1.58
0.1 7 (V4) 18 7 66 —0.00176 0.05844 1.04
0.01 3 (V2)and(V4) 6 1 38 0.0 0.00305 0.13
0.01 4 (V2)and (V4) 7 1 43 0.0 0.00919 0.2
001 6 (V2 39 21 72 0.0 1.5e-12 2.14
0.01 6 (V4) 16 1 68 0.0 1.5e-12 0.72
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For example, fot° = 0, U’ = E;;,i = 1,...,d, we obviously havd/(z) €
U only on feasible points on the coordinate axes, and it would suffice to investigate
the intersection points of the coordinate axes with the boundary of the polytope
{z : Az < b}. Since, however, no practical application of unary programs with such
simple matrices is known to us, in the numerical experiments in Raber (1996), we
chosen € N and used (similarly to the (UP) arising from quadratic problems)

U=E,, U =E;,1<i<min{n —1,4d},
;1
V2

such that an ONS results (which implies that we must kiave(;) +n — 1).

Typical results obtained for different problem sizes have been quite similar to
the figures in Table 3 where we chaose- 7 and various dimensions < n.

The variants (V2) and (V4) which use the additional modified Ramana cut
always outperformed the variants (V1) and (V3), respectively, so that the latter
approaches are not considereddet 0.01.

(7.3)

U (E¢;j+Ej), wherel<f < j<n, minln—-1d}<i<d

8. Conclusion

Previously proposed algorithms for solving unary programs cannot guarantee con-
vergence to an optimal solution. The present article overcomes this drawback by
presenting two convergent approaches which are based on sufficiently deep non-
linear cuts and subsequent simplicial inner approximation. Numerical performance
depends heavily on specific problem characteristics and on the form of the matrices
defining the affine matrix mapping, and is not very encouraging when applied to
unary programs arising from indefinite all-quadratic optimization problems. This
is mainly due to the considerable increase of the number of variablesfrtam

d = ("3%)+n. Further research should aim at the construction of deeper cuts and at
new characterizations of unarity of the matrix mapping for the specific practically
relevant matriceg¢/!. Another direction of ongoing research for solving indefinite
all-quadratic problems attempts to construct partitioning methods in the original
space combined with suitable relaxation techniques (cf. Al-Khayyal et al., 1945;
Raber, 1996).
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