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Abstract. Interesting cutting plane approaches for solving certain difficult multiextremal global
optimization problems can fail to converge. Examples include the concavity cut method for concave
minimization and Ramana’s recent outer approximation method for unary programs which are linear
programming problems with an additional constraint requiring that an affine mapping becomes unary.
For the latter problem class, new convergent outer approximation algorithms are proposed which
are based on sufficiently deepl∞-norm or quadratic cuts. Implementable versions construct opti-
mal simplicial inner approximations of Euclidean balls and of intersections of Euclidean balls with
halfspaces, which are of general interest in computational convexity. Computational behavior of the
algorithms depends crucially on the matrices involved in the unary condition. Potential applications
to the global minimization of indefinite quadratic functions subject to indefinite quadratic constraints
are shown to be practical only for very small problem sizes.

Key words: Unary programs, Indefinite quadratic optimization under indefinite quadratic constraints,
Outer approximation, Cutting plane methods

1. Introduction

Let

Sn := {S ∈ Rn×n : S symmetric}
and

Un := {U ∈ Sn : ∃v ∈ Rn with U = vvT }
denote the space of real symmetricn × n matrices and the set ofunary n × n
matrices, respectively.

Moreover, letU : Rd → Sn be an affine mapping defined by

U(z) = U0+
d∑
i=1

ziU
i, (1.1)

wherez = (z1, . . . , zd) ∈ Rd andUi ∈ Sn, i = 0, . . . , d.
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124 R. HORST AND U. RABER

GivenUi ∈ Sn, i = 0, . . . , d andh ∈ R
d , A ∈ R

m×d , b ∈ R
m , we call the

optimization problem

min hT z

s.t.Az ≤ b
U(z) ∈ Un (1.2)

in z ∈ Rd aunary program(UP).
Throughout this article we will assume that the polyhedron defined byAz ≤ b

is bounded, i.e. a polytope.
Our interest in problem (1.2) and the content of the present paper are motivated

from interesting observations and algorithmic ideas proposed in the dissertation
of Ramana (1993: ch. 7). Notice that Problem (1.2) can also be formulated as a
semidefinite program with an additional rank constraint (for related discussion,
see, e.g., Fujie and Kojima, 1995; Poljak et al., 1995; Ramana, 1993; Shor, 1987;
Vandenbergh and Boyd, 1996). A first interesting observation made in Ramana
(1993) (without detailed proof) is that an arbitrary all-quadratic global optimization
problem, which consists in minimizing an indefinite quadratic objective function
subject to a finite number of indefinite quadratic constraints, can be transformed
into an equivalent (UP) of the form (1.2). Such indefinite all-quadratic optimization
problems arise from various important applications; for a survey we refer to Al-
Khayyal et al. (1945). A second observation is based on eigenvalue inequalities
due to Weyl: Given an optimal vertex solutionz̄ of the LP-relaxation min{hT z :
Az ≤ b} of (1.2) satisfyingU(z̄) 6∈ Un, and given the eigenvalues ofU(z̄), a
linear constraint̀ (z) ≤ 0 can be constructed satisfying̀(z̄) > 0 but `(z) ≤
0∀z : U(z) ∈ Un. Therefore, by successively adding such valid cuts`(z) ≤ 0
to LP-relaxations of (1.2), one obtains an outer approximation (or cutting plane)
algorithmic approach for solving (1.2), several variants of which are proposed in
Ramana (1993). A serious deficiency of this algorithmic approach, however, con-
sists in the fact that cuts can eventually become very shallow such that convergence
of the sequence of outer approximation to an optimal solution of (1.2) cannot be
guaranteed. A similar deficiency has been observed in other cutting plane methods
for certain global optimization problems (cf. Horst and Tuy, 1996: ch. 3).

It is the purpose of the present paper to overcome the above deficiency by
proposing alternative outer approximation algorithms for solving (1.2) which are
convergent in the sense that every accumulation point of the sequence of outer ap-
proximations is an optimal solution of (1.2). Using the observation that in Problem
(1.2) with (1.1) it suffices to consider matricesUi ∈ Sn, i ≤ 1, . . . , d, which form
an orthonormal system with respect to the inner product.

· : Rn×n × Rn×n → R :⇔ A · B = tr(AT B) =
n∑

i,j=1

AijBij , (1.3)
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where

A = (Aij )n×n, B = (Bij )n×n ∈ Sn,

we first derive validl∞-norm and quadratic cuts. These are reverse convex con-
straints which, for each optimal solution̄z of an LP-relaxation of (1.2) satisfy-
ing U(z̄) 6∈ Un, cut a sufficiently large ball (with respect to the`∞-norm or to
the Euclidean norm) centered atz̄ out of the polyhedron defined by relaxed con-
straints without affecting unarity in such a way that convergent outer approximation
schemes result. In case of the`∞-norm, the balls can be built up by successive
cutting planes. In case of the Euclidean norm, we propose an optimal inner approx-
imation by regular simplices which leads to a convergent cutting plane algorithm.
Suitable additional cuts can be derived in order to speed up convergence.

The paper is organized as follows. The next section demonstrates how indef-
inite all-quadratic optimization problems can be transformed into an equivalent
unary program of the form (1.2), where the matrices corresponding to the matrices
Ui in (1.1) form an orthonormal system with respect to the inner product (1.3).
Section 3 puts together some preliminaries underlying the basic idea of the outer
approximation approaches and discusses briefly Ramana’s algorithm. In Section 4,
the above mentioned quadratic cuts are derived along with convergence properties
of corresponding outer approximation schemes. Section 5 presents a convergent
cutting plane algorithm which uses the`∞-norm, and Section 6 discusses imple-
mentable algorithms for the case of Euclidean balls. The final Sections 7 and 8
contain some preliminary numerical results obtained with a number of randomly
generated examples and a brief conclusion, respectively, which shows, in particular,
that practical application to all-quadratic optimization problems is limited to very
small problem sizes.

2. Unary programs and all-quadratic optimization problems

In this section, it is shown that an optimization problem with arbitrary quadratic
objective function andp arbitrary quadratic inequalities inn variables is equivalent
to an unary program in

(
n+1

2

)+ n variables. By reasons which will become evident
in Section 4, we choose a transformation which yields an unary program, where
the matrices corresponding to the matricesUi, i = 1, . . . , d, in (1.1) form an
orthonormal system (ONS) with respect to the inner product (1.3). Consider the
all-quadratic optimization problem (AQP)

min xTQ0x + (d0)T x

s.t.xTQix + (di)T x + ci ≤ 0, i = 1, . . . , p, (2.1)

where theQi are symmetric realn × n matrices,di ∈ R
n , i = 0, . . . , p, and

ci ∈ R, i = 1, . . . , p. Notice that the matricesQi can be negative semidefinite or
indefinite, cases in which we are particularly interested in.
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126 R. HORST AND U. RABER

Let ei denote thei-th unit vector inRn+1, and letEij = eieTj be the elementary
matrix with entry 1 at position(i, j), entries 0 else. Consider the (UP)

min hT z

s.t.Az ≤ b,
U(z) ∈Un+1, z ∈ R(n+1

2 )+n (2.2)

in the variablez = (z11, . . . , z1n, z1,n+1, z22, . . . , z2,n+1, . . . , znn, zn,n+1)
T , where

hij =
√

2Q0
ij , 1≤ i < j ≤ n; hii = Q0

ii , hi,n+1 = 1√
2
d0
i , i = 1, . . . , n,

A`,ij =
√

2Q`
ij , 1≤ i < j ≤ n, ` = 1, . . . , p; A`,ii = Q`

ii,

A`,(i,n+1) = 1√
2
d`i , i = 1, . . . , n, ` = 1, . . . , p; b` = −c`, ` = 1, . . . , p,

and

U : R(n+1
2 )+n→ Sn+1 :⇔

U(z) =
∑

1≤i<j≤n+1

zijU
ij +

n∑
i=1

ziiU
ii + U0 (2.3)

with Uij = 1√
2
(Eij + Eji), Uii = Eii , andU0 = En+1,n+1. Equivalence between

the (AQP) (2.1) and the (UP) (2.2) holds in the sense of the following result.

PROPOSITION 2.1.Letx∗ be an optimal solution of Problem (2.1) and letz∗ be
an optimal solution of Problem (2.2). If we set

z̄ij =
√

2x∗i x
∗
j , 1≤ i < j ≤ n;

z̄ii = x∗i x∗i , 1≤ i ≤ n; z̄i,n+1 =
√

2x∗i , 1≤ i ≤ n,
and

x̄i = 1√
2
z∗i,n+1, 1≤ i ≤ n,

then z̄ is a feasible solution of Problem (2.2),x̄ is a feasible solution of Problem
(2.1), and

(x̄)TQ0x̄ + (d0)T x̄ = (x∗)TQ0x∗ + (d0)T x∗ = hT z̄ = hT z∗. (2.4)
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Proof.Straightforward calculation shows that

U(z̄) =
(
x∗

1

)
((x∗)T ,1),

and henceU(z̄) ∈Un+1.
LetA` denote thè -th row of the matrixA, ` = 1, . . . , p. Then we have

A`z̄ =
∑

1≤i≤j≤n
A`,ij z̄ij +

n∑
i=1

A`(i,n+1)z̄i,n+1 =
n∑

i,j=1

Q`
ij x
∗
i x
∗
j +

n∑
i=1

d`i x
∗
i

= (x∗)T Q`x∗ + (d`)T x∗ ≤ −c` = b`

i.e., z̄ is a feasible solution of Problem (2.2). Similar direct calculations show that

hT z̄ = (x∗)TQ0x∗ + (d0)T x∗,

and hence, sincēz satisfies the constraints of (2.2), andz∗ is an optimal solution of
(2.2), we have

hT z∗ ≤ (x∗)TQ0x∗ + (d0)T x∗.

Analogously, one easily obtains thatx̄ is feasible for (2.1) andhT z∗ = (x̄)TQ0x̄+
(d0)T x̄, which implies that

hT z∗ ≥ (x∗)TQ0x∗ + (d0)T x∗. 2

Notice that additional linear constraints in (2.1) can be transformed into equivalent
linear constraints to be added to (2.2) in a straightforward way. Boundedness of
{z ∈ R

d : Az ≤ b} is not necessarily guaranteed in the (UP) (2.2) arising from
(2.1). But if bounds ¯̀ ≤ x ≤ L̄ for the variablex ∈ R

n of (2.1) are known
(which is often the case in applications), then we obtain the additional constraints
` ≤ z ≤ L in (2.2), where the components of the vectors`,L ∈ Rd , d = (n+1

2

)+n,
are given by

lii := min{l̄i l̄i , L̄iL̄i}, 1≤ i ≤ n; Lii := max{l̄i l̄i , L̄iL̄i}, 1≤ i ≤ n;
lij :=

√
2 min{l̄i l̄j , l̄i L̄j , L̄i l̄j , L̄iL̄j }, 1≤ i < j ≤ n;

Lij :=
√

2 max{l̄i l̄j , l̄i L̄j , L̄i l̄j , L̄iL̄j }, 1≤ i < j ≤ n;
li,n+1 :=

√
2l̄i , 1≤ i ≤ n; Li,n+1 :=

√
2L̄i, 1≤ i ≤ n,

respectively.
Notice that a short formulation of Proposition 2.1 using semidefinite program-

ming notation is available along the lines given, e.g., in Fujie and Kojima (1995),
Poljak et al. (1995), Ramana (1993), and Vandenbergh and Boyd (1996).
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128 R. HORST AND U. RABER

3. Preliminaries and Ramana’s approach

The following results taken from Ramana (1993) are needed for the cutting plane
algorithms which we will discuss in this and subsequent sections.

Let n ≥ 2.

LEMMA 3.1. Let U ∈ Sn, and letλ1(U) ≤ λ2(U) ≤ · · · ≤ λn(U) denote its
eigenvalues. Then the following assertions are equivalent:

(i) U ∈Un;

(ii) λi(U) = 0, i = 1, . . . , n− 1;

(iii) λ1(U) ≥ 0 andλn−1(U) ≤ 0;

(iv) λ1(U) ≥ 0 and tr(U) ≤ λn(U).
Proof.The above equivalences follow readily from the well-known facts that a

matrixU is unary if and only if it is positive semidefinite and rank(U) = 1, and
that tr(U)=∑n

i=1 λi(U). 2

LEMMA 3.2 (Weyl). Let E,F ∈ Sn with eigenvalues indexed in an increasing
order as above. Then, fork ∈ {1, . . . , n}, we have

λ1(F )+ λk(E) ≤ λk(F + E) ≤ λk(E)+ λn(F )
Proof.See, e.g., Horn & Johnson (1985). 2

COROLLARY 3.1. LetU : Rd → Sn be an affine matrix mapping defined by

U(z) = U0+
d∑
i=1

ziU
i, z ∈ Rd ,

whereUi ∈ Sn, i = 0, . . . , d. Then, for everyy ∈ Rd+ andk ∈ {1, . . . , n},

λk(U(y)) ≤ λk(U0)+
d∑
i=1

yiλn(U
i)

and

λk(U(y)) ≥ λk(U0)+
d∑
i=1

yiλ1(U
i).

Proof. Apply twice Weyl’s inequality (Lemma 3.2) and use thatλi(µU) =
µλi(U) ∀µ ≥ 0. 2

Next, consider the LP-relaxation

min hT z

Az ≤ b (3.1)
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of (UP) (1.2) which arises from (1.2) when the unary conditionU ∈Un is omitted.
Given a vertex optimal solution̄z of (3.1) and the affine matrix mappingU defined
in (1.1), thenλ1(U(z̄)) = 0 andλn−1(U(z̄)) = 0 implies thatz̄ is an optimal
solution of (UP) because of Lemma 3.1. Otherwise, one must haveλ1(U(z̄)) < 0
orλn−1(U(z̄)) > 0 (or both). In this case, however, Corollary 3.1 allows one to con-
struct an additional linear constraint`(z) ≤ 0 which, when added to the constraints
of (3.1), is violated bȳz but satisfied by all feasible solutions of (1.2). Continuing in
this way, one obtains a polyhedral outer approximation (or cutting plane) approach
which, in each iteration requires only solving linear programs and eigenvalue cal-
culation. Each vertex optimal solutionzk of such a linear program is the unique
solution of a nonsingulard × d system of linear equations binding atzk, which –
following the standard terminology in simplex algorithms – will be called a non-
singular basic system corresponding tozk. Simplex-type algorithms provide such
a system automatically. Based on the above arguments, Ramana (1993) proposed
the following approach:

ALGORITHM 1
Initialization:

SetP 0← {z ∈ Rd : Az ≤ b}, stop← false,k← 0

While stop = falsedo
Solve the LP min{hT z : z ∈ P k} to obtain a vertex optimal solutionzk and
a corresponding nonsingular basic systemBkz ≤ rk satisfyingBkzk = rk;
compute the eigenvaluesλi(U(zk))

if λ1(U(z
k)) ≥ 0 andλn−1(U(z

k)) ≤ 0 then
zk is optimal solution of (UP),

set stop← true

else
if λn−1(U(z

k)) > 0 then
set(a1)ki ← λ1(U

0− U((Bk)−1ei)), i = 1, . . . , d,

(β1)k ← −λn−1(U(z
k)), and

P k ← P k ∩ {z ∈ Rd : −((a1)k)T Bkz ≤ −((a1)k)T Bkzk + (β1)k}
end if
if λ1(U(z

k)) < 0 then
set(a2)ki ← λn(U

0− U((Bk)−1ei)), i = 1, . . . , d,

(β2)k ← λ1(U(z
k)), and

P k ← P k ∩ {z ∈ Rd : ((a2)k)T Bkz ≤ ((a2)k)T Bkzk + (β2)k}
end if
setP k+1← P k, k← k + 1

end if
end while
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130 R. HORST AND U. RABER

It is easy to see that the cuts constructed in Algorithm 1 are valid (for details, see
Ramana, 1993), i.e.,zk 6∈ P k+1 but F := {z ∈ R

d : Az ≤ b,U(z) ∈ Un} ⊂
P k+1. However, convergence of the algorithm in the sense that every accumulation
point z∗ of the sequence{zk}k∈N satisfiesz∗ ∈ F cannot be guaranteed, since
((aj )k)T Bk (j = 1,2; k ∈ N) might fail to be bounded. For a related convergence
theory of cutting plane algorithms in global optimization, we refer to Horst & Tuy
(1996).

4. Valid cuts for convergent outer approximation algorithms

A first step towards convergent outer approximation algorithms for solving (UP)
or (AQP) via the corresponding (UP) consists in requiring that in the affine matrix
mapping (1.1)

U : Rd → Sn :⇔ U(z) = U0+
d∑
i=1

ziU
i

the matricesUi, i = 1, . . . , d, form an orthonormal system (ONS) with respect to
the inner product (1.3).

LEMMA 4.1. Each (UP) of the form (1.2) withU(z) defined by (1.1) can be
transformed into an equivalent (UP) where the matricesUi, i = 1, . . . , d, form
an ONS.

Proof. Let in the original problemU(z) = ∑d̄
i=1 ziŪ

i whereŪ i ∈ Sn, i =
1,2, . . . , d̄, are arbitrary. Determine a maximal linearly independent subset

{Ū ij : j = 1, . . . , d} ⊂ {Ū i : i = 1, . . . , d̄}
(so that the two linear spaces generated by theŪ ij respectively theŪ i have equal
dimension). Remove from the original (UP) all variableszi, i ∈ {1, . . . , d̄}\{ij , j =
1, . . . , d} along with the corresponding components of the vectorh and the corre-
sponding columns of the matrixA. Use the Gram–Schmidt procedure to generate
from {Ū ij : j = 1, . . . , d} a corresponding ONS{Uj : j = 1, . . . , d}. The final
transformation of the remaining entries ofh andA, respectively, is straightforward
via the homeomorphism which maps theŪ ij onto theUj , j = 1, . . . , d. 2

Notice that the transformation presented in Section 2 which links the all-quadratic
problem (2.1) to an equivalent unary program (2.2) yields an ONSUij in (2.3).

LEMMA 4.2. Let Eij = eie
T
j ∈ R

(n+1)×(n+1) , i, j = 1, . . . , n + 1. Then the
matrices

Uii = Eii, i = 1, . . . , n;
Uij = 1√

2
(Eij + Eji), 1≤ i < j ≤ n+ 1

form an ONS with respect to the inner product defined in (1.3).
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Proof.Lemma 4.2 can be verified by straightforward calculation. 2

Next, let‖A‖F =
√
A · A,A ∈ Sn, denote the norm induced by the inner product

(1.3) (the so-called Frobenius norm), and let‖ · ‖2 and‖ · ‖∞ denote the Euclidean
norm and the maximum norm, respectively, inRd .

LEMMA 4.3. Let{Ui; i = 1, . . . , d} ⊂ Sn form an ONS with respect to the inner
product·. Then∥∥∥∥∥

d∑
i=1

(z− z̄)iU i

∥∥∥∥∥
F

= ‖z− z̄‖2 ∀z, z̄ ∈ Rd . (4.1)

Proof.We have∥∥∥∥∥
d∑
i=1

(z− z̄)iU i

∥∥∥∥∥
2

F

= tr

( d∑
i=1

(z− z̄)iU i

)T ( d∑
i=1

(z− z̄)iU i

)
=

n∑
i,j=1

(z− z̄)i(z− z̄)j tr((Ui)T Uj)

=
d∑
i=1

(z− z̄)2i = ‖z− z̄‖22

since tr((Ui)T Uj) = Ui · Uj = δij . 2

Lemma 4.3 combined with Weyl’s inequality (Lemma 3.2) allows one to derive
bounds on the distance of eigenvalues ofU(z) andU(z̄).

PROPOSITION 4.1.Let {Ui : i = 1, . . . , d} ⊂ Sn form an ONS with respect to
the inner product·, and letU : Rd → Sn be an affine matrix mapping of the form

z→ U(z) = U0+
d∑
i=1

ziU
i, U0 ∈ Sn.

Assume that the eigenvalues of the matrices involved are indexed in an increasing
order. Then, for eachz, z̄ ∈ Rd , we have

λn−1(U(z)) ≥ λn−1(U(z̄))− ‖z− z̄‖2, (4.2)

and

λ1(U(z)) ≤ λ1(U(z̄))+ ‖z− z̄‖2. (4.3)
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132 R. HORST AND U. RABER

Proof.Since the Frobenius norm is an upper bound for the spectral radius, one
obtains by means of Lemma 3.2:

λn−1(U(z)) = λn−1(U(z− z̄)+ U(z̄)− U0)

= λn−1

(
d∑
i=1

(z− z̄)iU i + U(z̄)
)

≥ λn−1(U(z̄))+ λ1

(
d∑
i=1

(z− z̄)iU i

)

≥ λn−1(U(z̄))−
∥∥∥∥∥

d∑
i=1

(z− z̄)iU i

∥∥∥∥∥
F

= λn−1(U(z̄))− ‖z− z̄‖2.
Similarly, inequality (4.3) follows from

λ1(U(z)) = λ1(U(z− z̄)+ U(z̄)− U0) = λ1

(
d∑
i=1

(z− z̄)iU i + U(z̄)
)

≤ λ1(U(z̄))+ λn
(

d∑
i=1

(z− z̄)iU i

)

≤ λ1(U(z̄))+
∥∥∥∥∥

d∑
i=1

(z− z̄)iU i

∥∥∥∥∥
F

= λ1(U(z̄))+ ‖z− z̄‖2. 2

Notice that Proposition 4.1 can also be derived from the Hoffman–Wielandt
(1953) inequality.

Similar bounds with respect to the maximum norm follow by using

‖z‖22 =
d∑
i=1

|zi|2 ≤
d∑
i=1

‖z‖2∞ = d‖z‖2∞.

COROLLARY 4.1. Under the assumption of Proposition 4.1 there holds

λn−1(U(z)) ≥ λn−1(U(z̄))−
√
d‖z− z̄‖∞ (4.4)

and

λ1(U(z)) ≤ λ1(U(z̄))+
√
d‖z− z̄‖∞. (4.5)

Let now again̄z ∈ Rd be an optimal solution of an LP- relaxation of the (UP) (1.2)
satisfyingU(z̄) 6∈ Un. Then it follows from Proposition 4.1 and Lemma 3.1 (iii)
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SOLVING UNARY PROGRAMS 133

that

`1,z̄(z) := max{λn−1(U(z̄)),−λ1(U(z̄))} − ‖z− z̄‖2 ≤ 0 (4.6)

is a valid cut, i.e., we havè1,z̄(z̄) > 0 but`1,z̄(z) ≤ 0 ∀z : U(z) ∈ Un. Likewise,
Corollary 4.1 yields a similar valid cut

`2,z̄(z) := 1√
d
(max{λn−1(U(z̄)),−λ1(U(z̄))})− ‖z− z̄‖∞ ≤ 0. (4.7)

Next, we show that an outer approximation algorithm for solving (1.2) which uses
either (4.6) or (4.7) is convergent. Notice, however, that both cuts are nonlinear so
that an algorithm which uses one of them directly induces difficult subproblems.
Ways to overcome these difficulties will be discussed in the following sections.

PROPOSITION 4.2.Let {zk}k∈N be a sequence of points in{z ∈ Rd : Az ≤ b}
satisfying either

`1,zk (z
i) ≤ 0, k, i ∈ N, i > k (4.8)

or

`2,zk (z
i) ≤ 0, k, i ∈ N, i > k. (4.9)

Then every accumulation pointz∗ of {zk}k∈N satisfiesU(z∗) ∈Un.
Proof.We prove the result for̀1,zk ; the proof for̀ 2,zk is similar: Let{zkq }q∈N be

a subsequence of{zk}k∈N satisfyingzkq → z∗(q →∞). From (4.8) follows that

`1,zkq (z
kq+1) ≤ 0,

which, in view of (4.6), implies

max{λn−1(U(z
kq )),−λ1(U(z

kq ))} → 0 (q →∞),
since‖zkq+1 − zkq‖2→ 0 (q →∞).

From this ensues

λ1(U(z
∗)) = λn−1(U(z

∗)) = 0

by continuity of the eigenvalue functionalsλ1, λn−1 : Sn → R. But this is equiva-
lent toU(z∗) ∈ Un because of Lemma 3.1. 2

5. Implementable algorithm using the`∞-norm

Consider the (UP) (1.2) with{z ∈ Rd : Az ≤ b} not empty and bounded. Assume
that{Ui : i = 1, . . . , d} forms an ONS with respect to the inner product· defined
in (1.3), and letn ≥ 2, d ≥ 2. The following algorithm is based on the cut (4.7)
and uses the fact that the`∞-unit ball is the intersection of 2d hyperplanes.
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ALGORITHM 2
Initialization:
SetP 0 ← {z ∈ R

d : Az ≤ b}, and solve the LP min{hT z : z ∈ P 0} to obtain
an optimal solutionz0; setµP 0 ← hT z0, µ0 ← µP 0, P ← {P 0}, stop← false,
k← 0

While stop = falsedo
if λ1(U(z

k)) ≥ 0 andλn−1(U(z
k)) ≤ 0 then

zk is optimal solution of (UP),
set stop← true

else
setεk ← 1√

d
max{−λ1(U(z

k)), λn−1(U(z
k))}

for j = 1 until 2
for i = 1 until d

setP kij ← P k ∩ {z ∈ Rd : (−1)j zi ≤ (−1)j zki − εk}
if P kij 6= ∅ then
solve the LP min{hT z : z ∈ P kij } to obtain an optimal solutionzkij
and optimal objective function valueµPkij

; setP ← P ∪ {P kij }
end if

end for
end for
setP ← P \{P k}
if P 6= ∅ then

setµk+1← min{µP : P ∈ P }, and choosezk+1 andP k+1 ∈ P such
thatzk+1 ∈ P k+1 andµk+1 = hT zk+1 = µPk+1; set
k← k + 1

else
Problem (UP) has no feasible point, setstop← true

end if
end if

end while

REMARK 5.1. The setP is a collection of polytopes, and the number of inequal-
ities describing a polytopeP ∈ P can be bounded bym+ 2d, since fori, j fixed
the halfspaces defined by(−1)j zi ≤ (−1)j zki − εk are parallel for allk ∈ N.

PROPOSITION 5.1.
(i) If Algorithm 2 terminates at a pointzk, thenzk is an optimal solution of

Problem (UP).

(ii) Otherwise, every accumulation point of the sequence{zk}k∈N is an optimal
solution of Problem (UP).
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Proof.We first show by induction that, at each iterationk, the current partition
P satisfies⋃

P∈P
⊃ F, (5.1)

whereF denotes the feasible set of Problem (UP).
This implies assertion (i), and moreover, thatµk ≤ min{hT z : z ∈ F }. For

k = 0, we haveP = {P 0}, P 0 = {z ∈ Rd : Az ≤ b}, and hence (5.1). Assume that
(5.1) holds at the beginning of iterationk. Then it suffices to show that⋃

i=1,... ,d
j=1,2

P kij ⊃ F ∩ P k.

Let z ∈ F ∩ P k. From Corollary 4.1 we know that

λn−1(U(z)) ≥ λn−1(U(z
k))−√d‖z− zk‖∞

and

λ1(U(z)) ≤ λ1(U(z
k))+√d‖z− zk‖∞.

But λn−1(U(z)) = λ1(U(z)) = 0, sincez ∈ F (cf. Lemma 3.1), and hence

‖z− zk‖∞ = max
i=1,... ,d

|zi − zki | ≥
1√
d

max{−λ1(U(z
k)), λn−1(U(z

k))} = εk.

It follows that there existi0 ∈ {1, . . . , d}, j0 ∈ {1,2} such that(−1)j0(zki0 − zi0) ≥
εk. This impliesz ∈ P ki0j0 , sincez ∈ P k.

Next, letz∗ be an accumulation point of the sequence{zk}k∈N, and let{zkq }q∈N
be a subsequence such thatzkq → z∗(q → ∞). It suffices to show thatz∗ ∈ F ,
since this implieshT z∗ ≥ min{hT z : z ∈ F }, where equality must hold because of
hT zkq = µkq ≤ min{hT z : z ∈ F }. By passing to a subsequence, if necessary, we
can assume thatP kq+1 ⊂ P kq , q ∈ N. This implies, by construction,

‖zkq+1 − zkq‖∞ ≥ εkq = 1√
d

max{−λ1(U(z
kq )), λn−1(U(z

kq ))} ∀q ∈ N.

Passing to the limitq → ∞ and using continuity of the eigenvalue functionals
yieldsλ1(U(z

∗)) = λn−1(U(z
∗)) = 0, i.e.,z∗ ∈ F (cf. Lemma 3.1). 2

6. Implementable algorithms using the Euclidean norm

Geometrically, the inequalities (4.6) and (4.7) tell us that, for each optimal solution
z̄ of an LP-relaxation of the (UP), satisfyingU(z̄) 6∈ Un, one can cut a ball out

jogo427.tex; 27/08/1998; 11:46; p.13



136 R. HORST AND U. RABER

of the polyhedron defined by relaxed constraints without affecting unarity. This
can be done by linear cuts in case of the`∞-norm (Algorithm 2). In case of the
Euclidean norm (inequality (4.6)), we propose inner approximation of the ball by
a regulard-dimensional simplex (d- simplex) with vertices at the boundary of the
ball. This choice is motivated by the two facts, that, on one hand, ad-simplex is
thed- polytope with minimal number of facets, and, on the other hand, that among
the d-simplices contained in a given ball, only the regular ones are largest (with
respect to volume) (for a proof see Slepan, 1969).

Let Bd denote the Euclidean unit ball centered at the origin, and letS =
[v0, . . . , vd ] be a regulard-simplex with all vertices on the boundary ofBd . Then
it is known that the edge-length ofS is given by

‖vi − vj‖2 =
√

2(d + 1)

d
, i, j ∈ {0, . . . , d}, i 6= j (6.1)

(cf. Sommerville, 1929; Gritzmann et al., 1995). Moreover, it is elementary to show
that we have 0= 1

d+1

∑d
i=0 vi, and that the radius of the largest Euclidean ball

which can be inscribed intoS is

r = 1

d
, (6.2)

where the numberr is also the distance of each facet ofS from the origin. We
also use the fact that, forj = 0, . . . , d, the vertexvj is orthogonal to the facet
Sj = [v0, . . . , vj−1, vj+1, . . . , vd ], and hence the hyperplaneHSj generated bySj
can be described by

HSj = {x ∈ Rd : vTj (vi − x) = 0}, i ∈ {0, . . . , d}\{j}. (6.3)

Next we show that the following vectorsv0, . . . , vd are vertices of a regulard-
simplexS with circumsphereBd . Set

v0 = √a0ed

vi = √a2ied−1−
i∑

j=1

√
a2j−1ed−(j−1), i = 1, . . . , d − 1, (6.4)

vd = −√a2(d−1)e1−
d−1∑
j=1

√
a2j−1ed−(j−1),

where

a0 = 1,

ai =

ai−1/

(
d − i − 1

2

)2

, i odd

ai−2 − ai−1, i even,
(6.5)

andei ∈ Rd is thei-th unit vector.
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LEMMA 6.1. Leta0, . . . , a2(d−1) be defined as above. Then we have

a2i = d + 1

d
· d − i
d − i + 1

, i = 1, . . . , d − 1. (6.6)

Proof. The assertion is obviously correct fori = 0. Assume that it holds for
i = j − 1, j ≥ 1. Then we have, in view of (6.5):

d − j + 1

d − j a2j = d − j + 1

d − j (a2j−2− a2j−1)

= d − j + 1

d − j (a2j−2− a2j−2/(d − j + 1)2)

= d − j + 1

d − j
(d − j + 1)2− 1

(d − j + 1)2
a2j−2

= d − j + 2

d − j + 1
a2j−2 = d + 1

d

which is the desired result fori = j .

PROPOSITION 6.1.The simplexS = [v0, . . . , vd ] constructed as above satisfies
(i) ‖vi‖2 = 1, i ∈ {0, . . . , d},

(ii) ‖vi − vj‖2 =
√

2(d+1)
d
, i, j ∈ {0, . . . , d}, i 6= j.

Proof.From (6.5) we have

a2i = 1−
i∑

j=1

a2j−1, i = 0, . . . , d − 1, (6.7)

and hence

‖vi‖22 = a2i +
i∑

j=1

a2j−1 = 1, i = 0, . . . , d − 1.

Assertion (i) follows, since‖vd‖2 = ‖vd−1‖2.
Lemma 6.1 and (6.7) yield

‖vd−1− vd‖22 = 4a2(d−1) = 2
d − (d − 1)+ 1

d − (d − 1)
a2(d−1) = 2

d + 1

d
,
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and, fori, j ∈ {0, . . . , d}, i < j, i < d − 1:

‖vi − vj‖22 = a2j +
j∑

l=i+2

a2l−1+ (√a2i +√a2i+1)
2

= 1−
j∑
l=1

a2l−1+
j∑

l=i+2

a2l−1+ (√a2i +√a2i+1)
2

= 1−
i+1∑
l=1

a2l−1+ a2i + a2i+1+ 2
√
a2i
√
a2i+1

= 2a2i + 2
√
a2i

√
a2i

(d − i)2
= 2a2i + 2a2i

1

d − i
= 2

(d − i + 1)

d − i a2i = 2
(d + 1)

d
. 2

Given the above regular simplicial inner approximation of an Euclidean ball and
the simple representation (6.3) of the hyperplanes generated by its facets, an im-
plementable outer approximation algorithm for solving Problem (UP) can be for-
mulated along lines which are very similar to Algorithm 2 and its discussion:
Substitute the unit ballBd by the ball{z ∈ R

d : ‖z − zk‖2 ≤ εk} wherezk is
an optimal solution to an LP-relaxation of Problem (UP) satisfyingU(zk) 6∈ Un,
andεk = max{−λ1(U(z

k)), λn−1(U(z
k))}, and replace the above simplex vertices

vi by εkvi + zk.
Finally, in Algorithm 2 replaceεk accordingly, and, in the loop generating the

setsP kij , replace these by

P ki ← P k ∩ {z ∈ Rd : vTi z ≤ vTi (εkv1+ zk)}, if i = 0,

and by

P ki ← P k ∩ {z ∈ Rd : vTi z ≤ vTi (εkv0+ zk)}, if 1 ≤ i ≤ d.
Convergence of the resulting algorithm can be proved very similarly to the proof
of Proposition 5.1 by using

εkq

d
≤ ‖zkq+1 − zkq‖2 (6.8)

for the correspondent subsequence, which holds because of (6.2). Details are given
in Raber (1996).

Improved cuts can be constructed by exploiting the following two observations.
The first observation will allow us to construct an additional linear cut in each
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iteration whereas the second observation aims at improving the above simplex with
respect to the depth of the cuts induced by its facets.

Let z̄ be an optimal vertex solution of an LP-relaxation of (UP),ε =
max{−λ1(U(z̄)), λn−1(U(z̄))} and letBz ≤ r denote a corresponding subsystem
with B ∈ Rd×d regular satisfyingBz̄ = r. Then the setC = {z ∈ Rd : Bz ≤ r}
describe a cone vertexed atz̄ and containingP = {z ∈ R

d : Az ≤ b} (C is the
smallest of such cones and uniquely determined whenz̄ is a nondegenerate vertex).
Each of thed extremal directionswi(i = 1, . . . , d) of C is a nontrivial solution of
the system

B`w
i = 0, ` = 1, . . . , i − 1, i + 1, . . . , d,

Biw
i ≤ 0,

whereB` denotes thè-th row ofB. Let w̄1, . . . , w̄d denote the intersection points
of the rays

{w ∈ Rd : w = z̄+ λwi, λ ≥ 0}, i = 1, . . . , d

respectively, with the ball

Bz̄ := {z ∈ Rd : ‖z− z̄‖2 ≤ ε},
and let

H = {z ∈ Rd : aT z = b}
denote the unique hyperplane satisfyingw̄i ∈ H , i = 1, . . . , d, ‖a‖2 = 1, and
aT z̄ > b. Then it follows from (4.6) that

P ∩ {z ∈ Rd : aT z ≤ b} ⊃ {z ∈ P : U(z) ∈Un},
i.e.,

aT z ≤ b (6.9)

is a valid cut.
Notice that, similarly to Ramana’s original approach, a cutting plane algorithm

which uses the above cut alone can fail to converge. However, convergence can be
accelerated when one uses it as additional cut in each iteration of the above con-
vergent outer approximation approach. Here, two variants are conceivable: Variant
1 adds the cut (6.9) to the list of cutting planes defining each polytopeP k. Variant
2 depends on the following condition:
Let P̄0 be a polytope obtained by a partitioning procedure which uses the above
simplicial inner approximation. Then we generate the next polytopes

P̄i = P̄i−1 ∩ {z ∈ Rd : (ai)T z ≤ bi}, i = 1, . . . , r + 1
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by r + 1 successive cuts (6.9) of the form(ai)T z ≤ bi , i = 1, . . . , r + 1, wherer
is the largest number such that

min
i=0,... ,r−1

{‖zP̄r − zP̄i‖2− ε(zP̄i )d} ≥ 0

holds withzP̄i optimal solution of min{hT z : z ∈ P̄i}, and

ε(zP̄i ) = max{−λ1(U(zP̄i )), λn−1(U(zP̄i ))}.
The polytopeP̄r+1 is then partitioned according to the above outlined variant of
Algorithm 2 (simplicial inner approximation), and we restart withP̄0 = P̄r+1.

Next, we consider the cut (6.9), and observe that

P ⊂ {z ∈ Rd : aT z ≤ aT z̄}.
Therefore, when using the cut (6.9), it suffices to construct a simplicial inner
approximationŜ of

Bz̄ ∩ {z ∈ Rd : aT z ≤ aT z̄}.
Let d ≥ 3. The simplexŜ which we propose will be the convex hull of a regular
(d − 1)-simplexS̄ ⊂ H̄ := {z ∈ Rd : aT z = aT z̄} and the intersection point of the
ray {z ∈ Rd : z = z̄ − λa, λ ≥ 0} with the boundary ofBz̄. For simplicity of the
presentation we constructŜ first for the case whereBz̄ = Bd (the Euclidean unit
ball) andH̄ = {z ∈ Rd : −eTd z = 0}. After this, we will show how this ‘standard’
simplex can be transformed to the general case ofBz̄ andH̄ defined above.

It is clear from our previous construction that the verticesv0, . . . , vd−1 of our
regular(d − 1)-simplex S̄ = [v0, . . . , vd−1] are given by the formula (6.4), (6.5)
whered has to be replaced throughout byd − 1. It is also clear fromH̄ = {z ∈
R
d : −eTd z = 0} that the last vertex of̂S is given by

vd = ed .
From Proposition 6.1 and the construction ofvd we see that

‖vi‖2 = 1, i = 0, . . . , d

‖vi − vj‖2 =
√

2d

d − 1
, i, j = 0, . . . , d − 1, i 6= j,

and

‖vi − vd‖ =
√

2, i = 0, , . . . , d − 1.

Next, in order to incorporate the simplexŜ into a cutting plane approach, we have
to derive an equivalent representation of the hyperplaneHŜi generated by the facets

Ŝi := [v0, . . . , vi−1, vi+1, . . . , vd ], i = 0, . . . , d − 1.
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LEMMA 6.2. We have

HŜi = {z ∈ Rd : v̂Ti z = v̂Ti vd}, i = 0, . . . , d − 1,

where

v̂i := vi − 1

d − 1
ed, i = 0, . . . , d − 1.

Proof.Since, fori ∈ {0, . . . , d − 1} we have

HŜi =
z ∈ Rd : z = vd +

d−1∑
j=0,j 6=i

µj (vj − vd), µ ∈ Rd


it suffices to show that

v̂Ti (vj − vd) = 0, j ∈ {0, . . . , d − 1}\{i}.
From(vj )d = 0, one obtains

v̂Ti (vj − vd) =
(
vi − 1

d − 1
ed

)T
(vj − ed)

= vTi vj +
1

d − 1
.

But

vTi vj = vTi v0 = − 1

d − 1

becausēS is a regular simplex with vertices at the boundary of the unit ball (cf.
(6.2)). It follows thatv̂i ⊥ HŜi . 2

Next, we show that the cuts given byHŜi , i = 0, . . . , d − 1 are deeper than the
cuts induced by the regular simplex.

PROPOSITION 6.2.The Euclidean distanceδ(0,HŜi ) of the hyperplaneHŜi de-
fined in Lemma 6.2 to the origin is

δ(0,HŜi ) =
1√

d2− 2d + 2
>

1

d
, i = 0, . . . , d − 1.

Proof.From

‖v̂i‖22 = 1+ 1

(d − 1)2
= d2− 2d + 2

(d − 1)2
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and Lemma 6.2, we see that

‖z‖2 ≥ 1

‖v̂i‖2 |v̂
T
i vd | =

1

d − 1
· 1

‖v̂i‖2 =
1√

d2− 2d + 2
∀z ∈ HŜi ,

and hence

δ(0,HŜi ) ≥
1√

d2− 2d + 2
.

Every affine combination
∑d

j=0,j 6=i λjvj ,
∑d

j=0,j 6=i λj = 1, lies inHŜi . Choosing

λj = d − 1

d2− 2d + 2
, j = 0, . . . , d − 1, j 6= i,

and

λd = 1

d2− 2d+ 2

we obtain

d∑
j=0,j 6=i

λjvj =
d−1∑

j=0,j 6=i

d − 1

d2− d + 2
vj + 1

d2− 2d + 2
vd.

But
∑d−1

j=0 vj = 0 since the origin is the barycenter ofS̄, and hence

d∑
j=0,j 6=i

λjvj = − d − 1

d2− 2d + 2
vi + 1

d2 − 2d + 2
vd

= − d − 1

d2− 2d + 2

(
vi − 1

d − 1
ed

)
= − d − 1

d2 − 2d + 2
v̂i ∈ HŜi .

It follows that

δ(0,HŜi ) ≤
d − 1

d2 − 2d + 2
‖v̂i‖2 = 1√

d2+ 2d + 2
,

which concludes the proof. 2

Next, we provide the transformation which maps the above constructed simplex
Ŝ (with respect to the unit ballBd and the hyperplanezd = 0) to a similar simplex
Ŝt corresponding to the ballBz̄ and the hyperplanēH = {z ∈ Rd : aT z = aT z̄}.
Construct an orthonormal basis{y1, . . . , yd−1} of the linear subspacēH − {z̄} (for
example, by means of the Gram–Schmidt method applied to the set of vectors
spanningH̄ ) and let

A = (y1, . . . , yd−1,−a)
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be the matrix with columnsy1, . . . , yd−1,−a. Clearly, the matrixA is orthogonal,
and hence the transformation

T : Rd → R
d :⇔ T (z) = εAz+ z̄ (6.10)

yields for anyz, ẑ ∈ Rd

‖T (z)− z̄‖2 = ε‖z‖2 and‖T (z)− T (ẑ)‖2 = ε‖z− ẑ‖2.
Therefore, the desired simplexŜt = [vt0, . . . , vtd ] is given by

vti = T (vi), i = 0, . . . , d. (6.11)

One easily verifies that the hyperplanesHŜti generated by the facetŝSti = [vt0, . . . ,
vti−1, v

t
i+1, . . . , v

t
d ], i = 0, . . . , d − 1, are given by

HŜti
= {z ∈ Rd : v̂Ti AT z = v̂Ti (εvd +AT z̄)}. (6.12)

Here is the algorithm which incorporates the above observations. Throughout, the
points vi, i = 0, . . . , d are the vertices of the simplex constructed above with
respect toBd and the hyperplanezd = 0.

In the following algorithm, we use againε(z) = max{−λ1(U(z)), λn−1(U(z))}.
ALGORITHM 3
Initialization:
SetP 0 ← {z ∈ Rd : Az ≤ b}, and solve the LP min{hT z : z ∈ P 0} to obtain an
optimal vertex solutionz0; set VP 0 ← {zP 0},µP 0 ← hT z0,µ0← µP 0, P ← {P 0},
stop← false, k← 0

while stop = falsedo
if λ1(U(z

k)) ≥ 0 and λn−1(U(z
k)) ≤ 0 then

zk is optimal solution of (UP),
setstop← true

else
setεk ← max{−λ1(U(z

k)), λn−1(U(z
k))}; chooseBk ∈ Rd×d regular

andrk ∈ Rd such thatBkz ≤ rk is a subsystem ofAz ≤ b andBkzk =
rk

for i = 1 until d
let wki 6= 0 ∈ R

d be a solution of the linear systemBk`w
k
i = 0,

` = 1, . . . , i− 1, i + 1, . . . , d, Bki w
k
i ≤ 0

setw̄ki ← zk + εk

‖wki ‖2
wki

end for
determineak ∈ Rd , ‖ak‖2 = 1 andbk ∈ R such that{w̄k1, . . . , w̄kd} ⊂
Hk := {z ∈ Rd : (ak)T z = bk}, (ak)T zk > bk;
setP̄ k ← P k ∩ {z ∈ Rd : (ak)T z ≤ bk}
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if P̄ k 6= ∅ then
solve the LP min{hT z : z ∈ P̄ k} to obtain an optimal vertex solution
z̄k and the corresponding optimal valueµP̄k ;
if minz∈V

Pk
{‖z̄k − z‖2− ε(z)/

√
d2 − 2d + 2} < 0 then

determine an orthonormal basisyk1, . . . , y
k
d−1 of the linear sub-

spaceHk − {zk}, and set
Ak ← (yk1, . . . , y

k
d−1,−ak)

for i = 0 until d − 1
set P ki ← P̄ k ∩ {z ∈ R

d : (vi − 1
d−1ed)

T ATk ≤ (vi −
1
d−1ed)

T (εkvd +ATk zk)}
if P ki 6= ∅ then

solve the LP min{hT z : z ∈ P ki } to obtain an optimal vertex
solutionzki and the corresponding optimal valueµPki ;
setP ← P ∪ {P ki }, VPki ← {zki }

end if
end for

else
P ← P ∪ {P̄ k}, VP̄k ← VPk ∪ {z̄k}

end if
end if
P ← P \{P k}
if P 6= ∅ then

setµk+1 ← min{µP : P ∈ P }, and choosezk+1 andP k+1 ∈ P
such thatzk+1 is a vertex ofP k+1 andµk+1 = hT zk+1 = µPk+1; set
k← k + 1

else
Problem (UP) has no feasible point, setstop← true

end if
end if

end while

Convergence of Algorithm 3 follows from the following property:

PROPOSITION 6.3.If Algorithm 3 generates an infinite sequence{zk}k∈N, then,
for every accumulation pointz∗ of {zk}k∈N, there exists a subsequence{zkq }q∈N
satisfying

(i) zkq → z∗ asq →∞, P kq ⊃ P kq+1 ∀q ∈ N,

(ii) ‖zkq+1 − zkq‖2 ≥ ε(zkq )/
√
d2− 2d + 2 ∀q ∈ N.

Proof. Property (i) is obvious from the definition of an accumulation point
and the construction of the polytopes. In order to prove (ii), we distinguish the
following two cases for the subsequence{zkq } satisfying (i).

CASE 1:∀i ≥ 0∃q(i) > i : V
P
kq(i) 6⊃ VPki .
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This means that, while generatingP kq(i) from P ki one must have applied at least
once the facial cuts induced by a simplex (the ‘P ki -loop, i = 1 until d − 1’ in
Algorithm 3). But then we know from Proposition 6.2 (taking into account the
subsequent transformation) that

‖zkq(i) − zki‖2 ≥ ε(zki )/
√
d2 − 2d + 2.

Therefore, the sequence{zkq(i)}i∈N ⊂ {zkq }q∈N satisfies property (ii).

CASE 2:∃i0 ≥ 0∀q ≥ i0 : VPkq ⊃ VPki0 .
This means that, for allq ≥ i0, the polytopeP kq+1 is generated from the polytope
P kq only by successive cuts of the form(ak)T z ≤ bk, and hence

min
z∈V

P
kq+1

{‖zkq+1 − z‖2− ε(z)/
√
d2 − 2d + 2} ≥ 0 ∀q ≥ i0.

This implies in particularly that, for allq ≥ i0, one has

zkq ∈ V
P
kq+1 ,

and hence

‖zkq+1 − zkq‖2− ε(zkq )/
√
d2− 2d + 2

≥ min
z∈V

P
kq+1

{‖zkq+1 − z‖2− ε(z)/
√
d2 − 2d + 2} ≥ 0.

Therefore, the subsequence{zkq }q≥io ⊂ {zkq }q∈N satisfies property (ii). 2

COROLLARY 6.1. If Algorithm 3 generates an infinite sequence{zk}k∈N, then
every accumulation pointz∗ is an optimal solution of Problem (UP).

Proof. In view of Proposition 6.3, the proof proceeds along the same lines of
arguments as the proof of Proposition 5.1. 2

7. Preliminary numerical results

The algorithms of the preceding sections along with some variants involving addi-
tional cuts were encoded in C++ with management of partition sets by AVL-trees
and use of the LP-subroutine E04NFF of the NAG-library.

Stopping criterion was max{−λ1(U(z)), λn−1(U(z))} < ε with chosen toler-
anceε > 0. Variant (V1) is Algorithm 2 with additional cuts of the form(ak)T z ≤
bk as discussed with Algorithm 3. Variant (V2) is Variant (V1) with additional
Ramana-cuts (cf. Algorithm 1) modified in the way that wheneverλ1(U(z

k)) < 0,
we use the cut

0≤ (wk)T U(zk)wk,
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wherewk is a normalized eigenvector ofλ1(U(z
k)) (cf. Ramana, 1993).

Variant (V3) is Algorithm 3, and Variant (V4) is Algorithm 3 with additional
modified Ramana-cuts as in (V2). A comprehensive study on numerical experi-
ments with randomly generated testproblems run on a SUN Sparc 10 workstation
is given in Raber (1996), from where we report some typical examples and main
conclusions. In the following tables, we use the abbreviations V for the variant,
NIT for the required number of iterations; MNPS and MNC denote the maximal
number of occurring partition sets and of total linear constraints, respectively, and
λ1, λn−1 andT are the final values ofλ1(U(z)), λn−1(U(z)) and computing times
(sec.), respectively.

A first observation is that the numerical performance of the approaches de-
pends heavily on specific properties of each test problem. For example, all of the
variants can perform very poorly when distinct multiple optimal solutions of Prob-
lem (UP) exist such that different convergent subsequences{zkq } are generated,
whereas unique optimal solutions might lead to quite satisfactory performances.
As illustrative example, consider the (UP)

min z11+ 1√
2
z12+ 1√

2
z13+ z22+ 1√

2
z23

s.t. − z11− z22 ≤ 0.5

0≤ zii ≤ 1 i = 1,2 (7.1)

0≤ zij ≤
√

2 1≤ i < j ≤ 3

U(z) ∈U3

with U(z) = E33+∑2
i=1 ziiEii +

∑2
i=1

∑3
j=i+1 zij

1√
2
(Eij +Eji) arising from the

simple quadratic problem

min x2
1 + x1x2+ x2

2 + x1 + x2

s.t. − x2
1 − x2

2 ≤ 0.5 (7.2)

0≤ xi ≤ 1, i = 1,2,

having convex objective but a ‘reverse’ convex constraint. Problem (7.1) has the
two optimal solutionsz1 = (0.5,0.0,1.0,0.0,0.0) andz2 = (0.0,0.0,0.0,0.5,1.0),
and forε = 0.1, we obtain the poor performances shown in Table 1.

On the other hand, Problem (7.1) with objective function

z11+ 1√
2
z12+ 1√

2
z13+ z22

which arises from (7.1) by omitting the last term1√
2
z23 of the objective (resp. from

(7.2) by omitting the last termx2) yields the results depicted in Table 2.
For unary problems not necessarily derived from all-quadratic optimization, it

is clear that algorithmic performance does essentially also depend on the form of
U0 and the orthonormal basisUi, i = 1, . . . , d.
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Table 1. Problem (7.1) withε = 0.1

V NIT MNPS MNC λ1 λn−1 T

(V1) 3804 4167 39 0.08845 0.09883 100.26

(V2) 2947 3123 75 0.06801 0.09615 120.68

(V3) 179203 136062 127 0.09937 0.09979 7317

(V4) 8448 4191 206 0.09612 0.09746 550

Table 2. Modified problem (7.1)

ε V NIT MNPS MNC λ1 λn−1 T

0.1 (V1) and (V3) 9 1 19 −0.06449 0.0 0.14

0.1 (V2) and (V4) 5 1 21 −0.01019 0.04281 0.11

0.001 (V1) and (V3) 13 1 23 −0.00078 0.0 0.21

0.001 (V2) and (V4) 8 1 30 −2.6e-07 0.00015 0.17

0.000001 (V1) and (V3) 17 1 27 −9.6e-06 0.0 0.28

0.000001 (V2) and (V4) 9 1 33 −7.0e-09 5.2e-06 0.21

Table 3. Numerical results forn = 7, d ≤ n

ε d V NIT MNPS MNC λ1 λn−1 T

0.1 3 all 1 1 26 0.0 0.09236 0.03

0.1 4 (V1) 7 9 32 −0.08843 0.08267 0.20

0.1 4 (V2) and (V4) 3 1 34 0.0 0.05456 0.10

0.1 4 (V3) 5 2 33 −0.09423 0.08175 0.14

0.1 5 (V1) 1917 3276 55 −0.09378 0.09995 67.28

0.1 5 (V2) 28 22 54 0.0 0.09481 1.17

0.1 5 (V3) 1665 1223 85 −0.08985 0.09907 62.65

0.1 5 (V4) 13 1 58 0.0 0.07576 0.40

0.1 6 (V2) 16 6 62 0.0 0.09612 0.78

0.1 6 (V4) 13 1 62 0.0 0.09618 0.59

0.1 7 (V2) 21 27 61 0.0 0.09953 1.58

0.1 7 (V4) 18 7 66 −0.00176 0.05844 1.04

0.01 3 (V2) and (V4) 6 1 38 0.0 0.00305 0.13

0.01 4 (V2) and (V4) 7 1 43 0.0 0.00919 0.2

0.01 6 (V2) 39 21 72 0.0 1.5e-12 2.14

0.01 6 (V4) 16 1 68 0.0 1.5e-12 0.72
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For example, forU0 = 0,Ui = Eii , i = 1, . . . , d, we obviously haveU(z) ∈
U only on feasible points on the coordinate axes, and it would suffice to investigate
the intersection points of the coordinate axes with the boundary of the polytope
{z : Az ≤ b}. Since, however, no practical application of unary programs with such
simple matrices is known to us, in the numerical experiments in Raber (1996), we
chosen ∈ N and used (similarly to the (UP) arising from quadratic problems)

U0 = Enn,Ui = Eii,1≤ i ≤ min{n− 1, d},
(7.3)

Ui = 1√
2
(E j̀ + Ej`), where 1≤ ` < j ≤ n, min{n− 1, d} ≤ i ≤ d

such that an ONS results (which implies that we must haved ≤ (n2)+ n− 1).
Typical results obtained for different problem sizes have been quite similar to

the figures in Table 3 where we chosen = 7 and various dimensionsd ≤ n.
The variants (V2) and (V4) which use the additional modified Ramana cut

always outperformed the variants (V1) and (V3), respectively, so that the latter
approaches are not considered forε = 0.01.

8. Conclusion

Previously proposed algorithms for solving unary programs cannot guarantee con-
vergence to an optimal solution. The present article overcomes this drawback by
presenting two convergent approaches which are based on sufficiently deep non-
linear cuts and subsequent simplicial inner approximation. Numerical performance
depends heavily on specific problem characteristics and on the form of the matrices
defining the affine matrix mapping, and is not very encouraging when applied to
unary programs arising from indefinite all-quadratic optimization problems. This
is mainly due to the considerable increase of the number of variables fromn to
d = (n+1

2

)+n. Further research should aim at the construction of deeper cuts and at
new characterizations of unarity of the matrix mapping for the specific practically
relevant matricesUi. Another direction of ongoing research for solving indefinite
all-quadratic problems attempts to construct partitioning methods in the original
space combined with suitable relaxation techniques (cf. Al-Khayyal et al., 1945;
Raber, 1996).
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